Answer:
Up first are Mercury and Venus. Neither of them has a moon. Because Mercury is so close to the Sun and its gravity, it wouldn't be able to hold on to its own moon. Any moon would most likely crash into Mercury or maybe go into orbit around the Sun and eventually get pulled into it.
The hot gases produce their own characteristic pattern of spectral lines, which remain fixed as the temperature increases moderately.
<h3><u>Explanation: </u></h3>
A continuous light spectrum emitted by excited atoms of a hot gas with dark spaces in between due to scattered light of specific wavelengths is termed as an atomic spectrum. A hot gas has excited electrons and produces an emission spectrum; the scattered light forming dark bands are called spectral lines.
Fraunhofer closely observed sunlight by expanding the spectrum and a huge number of dark spectral lines were seen. "Robert Bunsen and Gustav Kirchhoff" discovered that when certain chemicals were burnt using a Bunsen burner, atomic spectra with spectral lines were seen. Atomic spectral pattern is thus a unique characteristic of any gas and can be used to independently identify presence of elements.
The spectrum change does not depend greatly on increasing temperatures and hence no significant change is observed in the emitted spectrum with moderate increase in temperature.
True
False
True
My answers
Answer:
D. Histogram.
Explanation:
A histogram with equal intervals is suitable here.
Answer: There are number of electrons.
Explanation:
We are given 50 Coulombs of charge and we need to find the number of electrons that can hold this much amount of charge. So, to calculate that we will use the equation:
where,
n = number of electrons
Charge of one electron =
Q = Total charge = 50 C.
Putting values in above equation, we get:
Hence, there are number of electrons.