Answer:
Explanation:
The form of Newton's 2nd Law that we use for this is:
F - f = ma where F is the Force pulling the mass down the ramp forward, f is the friction trying to keep it from moving forward, m is the mass and a is the acceleration (and our unknown).
We know mass and we can find f, but we don't have F. But we can solve for that by rewriting our main equation to reflect F:
That's everything we need.
w is weight: 6.0(9.8). Filling in:
6.0(9.8)sin20 - .15(6.0)(9.8) = 6.0a and
2.0 × 10¹ - 8.8 = 6.0a and
11 = 6.0a so
a = 1.8 m/s/s
electromagnetic spectrum is consisting of many frequency range which is from gamma rays to radio waves
they are of various wavelength and different energy levels
minimum wavelength will occurs at Gamma rays
and maximum wavelength at Radio waves
the list of increasing order of wavelength is as following
Gamma rays < X rays < Ultraviolet < Visible Light < Infrared Waves < Radio Waves
so least to maximum order is
1. Gamma rays
2. X rays
3 Ultraviolet
4 Visible light
5 Infrared waves
6 Radio waves
Answer:

Explanation:
Given that
Wavelength λ=192 nm
So energy of photon,E

Now by putting the values




We know that
Kinetic energy given as




Your answer for the question is B c e
Answer:
1.40625 kg-m^2
Explanation:
Supposing we have to calculate rotational moment of inertia
Given:
Mass of the ball m= 2.50 kg
Length of the rod, L= 0.78 m
The system rotates in a horizontal circle about the other end of the rod
The constant angular velocity of the system, ω= 5010 rev/min
The rotational inertia of system is equal to rotational inertia of the the ball about other end of the rod because the rod is mass-less

=1.40625 kg-m^2
m= mass of the ball and L= length of the ball