The molarity of NaOH needed is calculated as follows
calculate the moles of KhC8h4O4
that is moles = mass/molar mass of KhC8h4O4(204.22 g/mol)
=0.5632g /204.22g/mol= 2.76 x10^-3 moles
write the equation for reaction
khc8h4O4 + NaOH ---> KNaC8h4O4 + H2O
from the equation above the reacting ratio of KhC8h4O4 to NaOh is 1:1 therefore the moles of Naoh is also 2.76 x10^-3 moles
molarity of NaOh = (moles of NaOh / volume ) x 1000
that is { (2.76 x10^-3) / 23.64} x100 =0.117 M
Answer:
Explanation:
The reaction is given as:

The reaction quotient is:
![Q_C = \dfrac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=Q_C%20%3D%20%5Cdfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)
From the given information:
TO find each entity in the reaction quotient, we have:
![[NH_3] = \dfrac{6.42 \times 10^{-4}}{3.5}\\ \\ NH_3 = 1.834 \times 10^{-4}](https://tex.z-dn.net/?f=%5BNH_3%5D%20%3D%20%5Cdfrac%7B6.42%20%5Ctimes%2010%5E%7B-4%7D%7D%7B3.5%7D%5C%5C%20%5C%5C%20NH_3%20%3D%201.834%20%5Ctimes%2010%5E%7B-4%7D)
![[N_2] = \dfrac{0.024 }{3.5}](https://tex.z-dn.net/?f=%5BN_2%5D%20%3D%20%5Cdfrac%7B0.024%20%7D%7B3.5%7D)
![[N_2] = 0.006857](https://tex.z-dn.net/?f=%5BN_2%5D%20%3D%200.006857)
![[H_2] =\dfrac{3.21 \times 10^{-2}}{3.5}](https://tex.z-dn.net/?f=%5BH_2%5D%20%3D%5Cdfrac%7B3.21%20%5Ctimes%2010%5E%7B-2%7D%7D%7B3.5%7D)
![[H_2] = 9.17 \times 10^{-3}](https://tex.z-dn.net/?f=%5BH_2%5D%20%3D%209.17%20%5Ctimes%2010%5E%7B-3%7D)
∴

However; given that:

By relating
, we will realize that 
The reaction is said that it is not at equilibrium and for it to be at equilibrium, then the reaction needs to proceed in the forward direction.
Answer:
D.
Explanation:
Hello,
In this case, the isomer of an organic compound is another organic compound having the same molecular formula but different structural formula, thus, the given compound's molecular formula is C₅H₈ since it is an alkyne due to the triple bond. Next, we analyze each option:
A. C₅H₁₂
B. C₅H₁₀
C. C₅H₁₀
D. C₅H₈
For that reason answer is D. based on the molecular formula as well as due to the presence of the triple bond unsaturation (alkyne as well).
Best regards.