Answer:
The volume increases because the temperature increases and is 2.98L
Explanation:
Charles's law states that the volume of a gas is directely proportional to its temperature. That means if a gas is heated, its volume will increase and vice versa. The equation is:
V₁/T₁ = V₂/T₂
<em>Where V is volume and T is absolute temperature of 1, initial state, and 2, final state of the gas.</em>
In the problem, the gas is heated, from 53.00°C (53.00 + 273.15 = 326.15K) to 139.00°C (139.00 + 273.15 = 412.15K).
Replacing in the Charles's law equation:
2.36L / 326.15K= V₂/412.15K
<h3>2.98L = V₂</h3>
<em />
Explanation:
Carbon monoxide and hydrogen gas reacts together to form methanol:
CO + 2H2 => CH3OH
Since 0.266mol * 2 = 0.532mol > 0.524mol, the limiting reactant here is hydrogen and therefore there will be 0.524mol / 2 = 0.262mol of methanol.
A is the answer just did it
1.4715 atm is the pressure of the sample 1.33 moles of fluorine gas that is contained in a 23.3 L container at 314 K.
What is an ideal equation?
The ideal gas equation, pV = nRT, is an equation used to calculate either the pressure, volume, temperature or number of moles of a gas. The terms are: p = pressure, in pascals (Pa).
Given data:
Volume (V) = 23.3 L
Number of mole (n) = 1.33 moles
Temperature (T) = 314 K
Gas constant (R) = 0.821 atm.L/Kmol
Pressure (P) =?
The pressure inside the container can be obtained by using the ideal gas equation as illustrated below:
PV = nRT
P × 23.3 L = 1.33 moles × 0.0821 ×314 K
P = 1.4715 atm
Therefore, the pressure of the sample is 1.4715 atm.
Learn more about the ideal gas equation:
brainly.com/question/23826793
SPJ1
Quantitative numerical data