Answer:
The coefficient of friction causes the force on the object to be less than its initial reading on the spring scale.
Explanation:
Since the block reads 24.5 N before the block starts to move, this is its weight. Now, when the block starts to move at a constant velocity, it experiences a frictional force which is equal to the force with which the student pulls.
Now, since the velocity is constant so, there is no acceleration and thus, the net force is zero.
Let F = force applied and f = frictional force = μN = μW where μ = coefficient of friction and N = normal force. The normal force also equals the weight of the object W.
Now, since F - f = ma and a = 0 where a = acceleration and m = mass of block,
F - f = m(0) = 0
F - f = 0
F = f
Since the force applied equals the frictional force, we have that
F = μW and F = 23.7 N and W = 24.5 N
So, 23.7 N = μ(24.5 N)
μ = 23.7 N/24.5 N
μ = 0.97
Since μ = 0.97 < 1, the coefficient of friction causes the force on the object to be less than its initial reading on the spring scale.
Answer:
Hello! Your answer is, sound in the air is faster
Explanation:
The speed of sound through air is about 340 meters per second. It's faster through water and it's even faster through steel. Light will travel through a vacuum at 300 million meters per second. So they're totally different scales.
Hope I helped! Ask me anything if you have any questions! Brainiest plz. Hope you make an 100% and have a nice day! -Amelia♥
First we have to establish that the number of protons is equivalent to the atomic number of element. Here I am assuming that you are referring to Potassium (K) - 40. Potassium, stable or unstable has 19 protons.
Answer:
25.59 m/s²
Explanation:
Using the formula for the force of static friction:
--- (1)
where;
static friction force
coefficient of static friction
N = normal force
Also, recall that:
F = mass × acceleration
Similarly, N = mg
here, due to min. acceleration of the car;

From equation (1)

However, there is a need to balance the frictional force by using the force due to the car's acceleration between the quarter and the wall of the rocket.
Thus,




where;
and g = 9.8 m/s²


Answer:

Explanation:
We need only to apply the definition of acceleration, which is:

In our case the final velocity is
, the initial velocity is
since it departs from rest, the final time is
and the initial time we are considering is 
So for our values we have:
