Answer:
The specific heat of aluminum is greater.
Explanation:
It lost the most heat.
If I am correct a <span>child holds a toy above her head and then lets it fall to the ground. </span>
Answer:
A. -2.16 * 10^(-5) N
B. 9 * 10^(-7) N
Explanation:
Parameters given:
Distance between their centres, r = 0.3 m
Charge in first sphere, Q1 = 12 * 10^(-9) C
Charge in second sphere, Q2 = -18 * 10^(-9) C
A. Electrostatic force exerted on one sphere by the other is:
F = (k * Q1 * Q2) / r²
F = (9 * 10^9 * 12 * 10^(-9) * -18 * 10^(-9)) / 0.3²
F = -2.16 * 10^(-5) N
B. When they are brought in contact by a wire and are then in equilibrium, it means they have the same final charge. That means if we add the charges of both spheres and divided by two, we'll have the final charge of each sphere:
Q1 + Q2 = 12 * 10^(-9) + (-18 * 10^(-9))
= - 6 * 10^(-9) C
Dividing by two, we have that each sphere has a charge of -3 * 10^(-9) C
Hence the electrostatic force between them is:
F = [9 * 10^9 * (-3 * 10^(-9)) * (-3 * 10^(-9)] / 0.3²
F = 9 * 10^(-7) N
Explanation:
It doesn't depends upon other.
It have it's own identity.
It's a lot easier to measure temperature than to measure the motion of component particles.
Answer:
f₂ = 468.67 Hz
Explanation:
A beat is a sudden increase and decrease of sound. The beats are produced through the interference of two sound waves of slightly different frequencies. Now we have the following data:
The higher frequency tone = f₁ = 470 Hz
No. of beats = n = 4 beats
Time period = t = 3 s
The lower frequency note = Frequency of Friend's Trombone = f₂ = ?
Beat Frequency = fb
So, the formula for beats per second or beat frequency is given as:
fb = n/t
fb = 4 beats/ 3 s
fb = 1.33 Hz
Another formula for beat frequency is:
fb = f₁ - f₂
f₂ = f₁ - fb
f₂ = 470 Hz - 1.33 Hz
<u>f₂ = 468.67 Hz</u>