Answer:
From the second law of motion:
F = ma
we are given that the force applied on the block is 20N and the block accelerates at an acceleration of 4 m/s/s
So, F= 20N and a = 4 m/s/s
Replacing the variables in the equation:
20 = 4* m
m = 20 / 4
m = 5 kg
Answer:
C
Explanation:
Vector A points up
Vector B points right
The combination must be both up and right which is C
Answer:
1.02 m/s²
Explanation:
The following data were obtained from the question:
Initial velocity (u) = 0 m/s
Final velocity (v) = 6.6 m/s
Time (t) = 6.5 s
Acceleration (a) =.?
Acceleration can simply be defined as the change of velocity with time. Mathematically, it can be expressed as:
a = (v – u) / t
Where:
a is the acceleration.
v is the final velocity.
u is the initial velocity.
t is the time.
With the above formula, we can obtain the acceleration of the car as follow:
Initial velocity (u) = 0 m/s
Final velocity (v) = 6.6 m/s
Time (t) = 6.5 s
Acceleration (a) =.?
a = (v – u) / t
a = (6.6 – 0) / 6.5
a = 6.6 / 6.5
a = 1.02 m/s²
Therefore, the acceleration of the car is 1.02 m/s²
Speed is the distance travelled by an object whereas velocity is distance travelled by an object per unit time in a given direction.
Answer:48.2 Joules
Explanation:
Given
two masses of 0.2 kg and 0.4 kg collide with each other
after collision 0.2 kg deflect 30 north of east and 0.4 kg deflects 53.1 south of east
Velocity of 0.2 kg mass is


Velocity of 0.4 kg mass


Thus total Kinetic energy 
Kinetic energy=48.2 J