The gravitational force experienced by Earth due to the Moon is <u>equal to </u>the gravitational force experienced by the Moon due to Earth.
<u>Explanation</u>:
The force that attracts any two objects/bodies with mass towards each other is defined as gravitational force. Generally the gravitational force is attractive, as it always pulls the masses together and never pushes them apart.
The gravitational force can be calculated effectively using the following formula: F=GMmr^2
where “G” is the gravitational constant.
Though gravity has the ability to pull the masses together, it is the weakest force in the nature.
The mass of the Earth and moon varies, but still the gravitational force felt by the Earth and Moon are alike.
Answer:
at R/
Explanation:
The free-fall acceleration at the surface of Earth is given by
where
G is the gravitational constant
M is the Earth's mass
R is the Earth's radius
The formula can be rewritten as
(1)
We want to shrink the Earth at a radius R' such that the acceleration of gravity becomes 3 times the present value, so
g' = 3g
Keeping the mass constant, M, and substituting into the equation, we have


OPTION C is the correct answer.
Answer:
Longest wavelength, lowest intensity
Explanation: