If iodine is added to a starch solution, they react with each other and the iodine darkens to an almost pitch black.
however, if iodine is added to a solution containing no starch, it will show up only as an extremely pale brown. almost colorless and hardly visible.
when following the changes in some inorganic oxidation reduction reactions, iodine may be used as an indicator to follow the changes of iodide ion and iodine element. soluble starch solution is added. only iodine element in the presence of iodide ion will give the characteristic blue black color. neither iodine element alone nor iodide ions alone will give the color result.
hope this answer really helps your question :)
"60 kg" is not a weight. It's a mass, and it's always the same
no matter where the object goes.
The weight of the object is
(mass) x (gravity in the place where the object is) .
On the surface of the Earth,
Weight = (60 kg) x (9.8 m/s²)
= 588 Newtons.
Now, the force of gravity varies as the inverse of the square of the distance from the center of the Earth.
On the surface, the distance from the center of the Earth is 1R.
So if you move out to 5R from the center, the gravity out there is
(1R/5R)² = (1/5)² = 1/25 = 0.04 of its value on the surface.
The object's weight would also be 0.04 of its weight on the surface.
(0.04) x (588 Newtons) = 23.52 Newtons.
Again, the object's mass is still 60 kg out there.
___________________________________________
If you have a textbook, or handout material, or a lesson DVD,
or a teacher, or an on-line unit, that says the object "weighs"
60 kilograms, then you should be raising a holy stink.
You are being planted with sloppy, inaccurate, misleading
information, and it's going to be YOUR problem to UN-learn it later.
They owe you better material.
Answer:
Explanation:
Given:
- time taken by the sun to complete one revolution,
- radial distance of the sunspot,
<u>Therefore, angular speed of rotation of sun:</u>
<u>Now the tangential velocity of the sunspot can be given by:</u>
In a transverse wave:
- Oscillations are perpendicular to the direction of energy travelling
- Frequency is the amount of complete waves passing a certain point in one second (measured in hertz, Hz)
- Wavelength is the distance from any point on one wave to the same point on the following wave
- The amplitude is the maximum displacement of the particles from their average position (and be measured from the horizontal mid-point of the wave to either the peak or trough)
There isn't always a defined relationship between these features. However, frequency × wavelength = velocity of the wave.
The suns gravitational pull