Answer:
Option E
Explanation:
In the presence of two point charges at the two vertices of an equilateral triangle, the resultant electric field at the third vertex due to these charges can not be zero whether the charges are identical or not.
The reason being that only of the x or y component of the field can be cancelled out in either case still the total field can't be reduced to zero.
This can only be achieved if another charge is present.
Answer: a) the greater speed for the ball is getting with the large radius of the circle. b) 1.68* 10 ^3 m/s^2 c) 1.25*10^3 m/s^2
Explanation: In order to solve this problem firstly we have to consider that speed in a of the circular movement is directly the angular rotation multiply the radius of the circle so by this we found that the second radius get large speed.
Secondly to calculate the centripetal acceleration for the ball we have to considerer the relationship given by:
acceleration in a circular movement= ω^2*r
so
a1= (8.44 *2*π)^2*r1=1.68 *10^3 m/s^2
a2= (5.95*2*π)^2*r2=1.25*10^3 m/s^2
Some guidance notes which may help.To calculate the current flow, Ohm's law can be used. This can be written as current=voltage/resistance, or I=V/R. V is 1.5V.R for the copper wire quoted would be calculated as R = resistivity x length/cross sectional area. The area would be calculated from the formula area = pi x diameter squared/4So, R=resistivity x length divided by (pi x diameter squared/4)Until is the resistivity of copper is known, that's about as far as can be gone.Any further questions, please ask.