Answer:
The time taken by the object to reach the ground is 0.58 seconds.
Explanation:
Given that,
An object was released from rest at height of 1.65 m with respect to ground. We need to find the time taken by the object to reach the ground. Initial speed of the object is 0 as it is at rest. It will move downward under the action of gravity such that, the distance covered by the object is given by :




t = 0.58 seconds
So, the time taken by the object to reach the ground is 0.58 seconds. Hence, this is the required solution.
1. calculate the value of acceleration that objects gains in that period of time
•calculating acceleration
5.50 = 1/2at^2
5.50*2/t^2 = a
11.00/0.657 = a
16.74=a
now you got the acceleration
2. you have laws of gravitation for that
g = Gm/r^2
where g is the acceleration value
16.74 = 6.754*10^-11 × m/ 6.28*10^4
105.14*10^4 /6.754*10-11 = m
15.567*10^15 = m
that would be the mass of the planet ...
Answer:
Scientific investigation is a quest to find the answer to a question using the scientific method. In turn, the scientific method is a systematic process that involves using measurable observations to formulate, test or modify a hypothesis.
Explanation:
Answer:
Option D.
Value cannot be calculated without knowing the speed of the train
Explanation:
The speed of the beam can only be calculated accurately when the speed of the train is put into consideration. Based of the theory of relativity, the observer is on the ground, and the train is moving with the beam of light inside it. This causes a variation in the reference frames when making judgements of the speed of the beam. The speed of the beam will be more accurate if the observer is moving at the same sped of the train, or the train is stationary.
To get the correct answer, we have to subtract the speed of the train from the speed calculated.