Answer:
The storm was a category 4 hurricane that struck Galveston, Texas, on September 8, 1900, bringing winds of 130 miles (210 km) per hour and high tides that overwhelmed the low-lying coastal city, demolishing buildings and claiming more than 8,000 lives.
00p- now I can actually answer :)
Hope that I helped you a little :0
Answer:
16.1 m/s
Explanation:
We can solve the problem by using the law of conservation of energy.
At the beginning, the spring is compressed by x = 35 cm = 0.35 m, and it stores an elastic potential energy given by

where k = 316 N/m is the spring constant. Once the block is released, the spring returns to its natural length and all its elastic potential energy is converted into kinetic energy of the block (which starts moving). This kinetic energy is equal to

where m = 0.15 kg is the mass of the block and v is its speed.
Since the energy must be conserved, we can equate the initial elastic energy of the spring to the final kinetic energy of the block, and from the equation we obtain we can find the speed of the block:

Answer:
E. two times the original diameter
Explanation:
Resistance of a wire is:
R = ρ L/A
where ρ is the resistivity of the material, L is the length, and A is the cross-sectional area.
For a round wire with diameter d:
R = ρ L / (¼ π d²)
The two wires must have the same resistance, so:
ρ₁ L₁ / (¼ π d₁²) = ρ₂ L₂ / (¼ π d₂²)
The wires are made of the same material, so ρ₁ = ρ₂:
L₁ / (¼ π d₁²) = L₂ / (¼ π d₂²)
The new length is four times the old, so 4 L₁ = L₂:
L₁ / (¼ π d₁²) = 4 L₁ / (¼ π d₂²)
1 / (¼ π d₁²) = 4 / (¼ π d₂²)
Solving:
1 / (d₁²) = 4 / (d₂²)
(d₂²) / (d₁²) = 4
(d₂ / d₁)² = 4
d₂ / d₁ = 2
So the new wire must have a diameter twice as large as the old wire.
I think it's C. if we're talking about a rover.
But if it's a rocket that's computerized and automatic (synonym of unmanned)... Then it's B.
For the answer to the question above, if your question is a lever with a pivot and which sounds more likely ...then I would say from the principle of moments: F1*d1=F2*d2
<span>given F1=high and F2=low ---> d1 must be low and d2 high for the equations to be balanced. </span>
<span>So the answer is simply: Inversely</span>