To develop this problem it is necessary to apply the concepts related to Wavelength, The relationship between speed, voltage and linear density as well as frequency. By definition the speed as a function of the tension and the linear density is given by

Where,
T = Tension
Linear density
Our data are given by
Tension , T = 70 N
Linear density , 
Amplitude , A = 7 cm = 0.07 m
Period , t = 0.35 s
Replacing our values,



Speed can also be expressed as

Re-arrange to find \lambda

Where,
f = Frequency,
Which is also described in function of the Period as,



Therefore replacing to find 


Therefore the wavelength of the waves created in the string is 3.49m
Answer:
0.84
Explanation:
m = Massa balok
g = Percepatan gravitasi
= Sudut kemiringan
= Koefisien gesekan statik antara balok dan bidang miring
Gaya balok karena beratnya diberikan oleh

Gaya gesekan diberikan oleh

Kondisi dimana balok mulai bergerak adalah ketika gaya balok akibat beratnya sama dengan gaya gesek pada balok.

Koefisien gesekan statik antara balok dan bidang miring adalah 0.84.
We can use the equation for kinetic energy, K=1/2mv².
Your given variables are already in the correct units, so we can just plug in the variables and solve for v.
K = 1/2mv²
16 = 1/2(2)v²
16 = (1)v²
√16 = v
v = 4 m/s
Therefore, the velocity of a 2 kg mass with 16 J of kinetic energy is 4 m/s.
Hope this is helpful!