Answer:
If the density of the object is high its molecular arrangement is compact while if the density is lows its molecular arrangement isnt that compact
<h2>The temperature of the air is 66.8° C</h2>
Explanation:
From the Newton's velocity of sound relationship , the velocity of sound is directly proportional to the square root of temperature .
In this case The velocity of sound = frequency x wavelength
= 798 x 0.48 = 383 m/sec
Suppose the temperature at this time = T K
Thus 383 ∝
I
The velocity of sound is 329 m/s at 273 K ( given )
Thus 329 ∝
II
Dividing I by II , we have
= 
or
= 1.25
and T = 339.8 K = 66.8° C
The energy of photon in kJ/mol is 329kJ/mol.
Wavelength of radiation is 370nm. The frequency of given wavelength is
ν = c / λ
ν = 3×10^8 / 370×10^-9
ν = 8.11 × 10^14 s^-1
Now the energy of photon is:
E = hν
E = 6.63×10^-34 J.s/photon × 8.11×10^14s^-1
E = 5.41× 10^-19 J/photon
To find in mole
E = 5.41× 10^-19 × 6.022×10^23
E = 3.29 ×10^ 5 J/mol
So, the energy of mole of photon is equal to 329 kJ/mol.
Learn more about radiation here:
brainly.com/question/18650102
#SPJ4
The correct expression for the maximum speed of the object during its motion is
.
<h3>
Maximum speed of the object</h3>
The maximum speed of the object is determined using the following formulas;
v(max) = Aω
where;
- A is the amplitude of the motion
- ω is angular speed
The maximum speed of the object can also be obtained from the maximum net force on the object,
F = ma
where;
- F is the maximum net force
- a is the acceleration
- m is mass of the object
F = m(v/t)
mv = Ft
v = Ft/m
Thus, the correct expression for the maximum speed of the object during its motion is
.
Learn more about maximum speed here: brainly.com/question/4931057
Answer:
Explanation:
Wgen the sound is emitting from two speakers, the sound waves interfere each other. the locations at which the destructive interference occurs, we get no sound and the locations where constructive interference occurs, the sound occurs at that locations.