Answer:
Newtons
Explanation:
Magnitude of charge on the electron = q =
Coulombs
The negative sign in the question statement indicates that the charge is negative.
Magnitude of Electric Field experienced by the electron = E =
Newtons/Coulomb
Magnitude of Force on the electron = F = ?
The relation between the charge, electric field and the force on the charge because of electric field is given by:

From here we can write:
F = qE
Using the values, we get:

Thus, the magnitude of the electric force experience by the electron would be
Newtons
Answer:
False
Explanation:
Think of the electric potential in terms of potential energy. If you imagine a place with high elevation (A) and another one at sea level (B), a ball will roll from high potential to low potential (A-->B).
Everything in our universe wants to reach a lower state of energy if no external force is acted upon it. Every object tends to slow down (friction), a radioactive element dissipates energy (an unstable element releases energy to get to a stable state), water in the clouds comes down to the ground (rain experiencing difference in potential energy).
Electric potential is exactly the same, you just can't see it! It flows from higher voltage (which is a synonym for electric potential) to lower voltage.
Answer:
Change in velocity and direction over a specific period of time.
Explanation:
In physics, acceleration can be defined as the rate of change of the velocity of an object with respect to time.
This simply means that, acceleration is given by the subtraction of initial velocity from the final velocity all over time.
Hence, if we subtract the initial velocity from the final velocity and divide that by the time, we can calculate the acceleration of an object.
Mathematically, acceleration is given by the equation;


Where,
a is acceleration measured in 
v and u is final and initial velocity respectively, measured in 
t is time measured in seconds.
Hence, the types of changes in motion that cause acceleration is a change in velocity and direction over a specific period of time.
Answer:
<em>The change of momentum of the dart is 0.84 Nw.s</em>
Explanation:
<u>Impulse and change of momentum</u>
The change in momentum of an object is its mass times the change in its velocity:

The change in the momentum can also be found by considering the force acting on it. If a force F acts for a time Δt, the change of momentum is given by:

The dart hits a dashboard with a net force of 14 N during the collision and stops in 0.06 seconds. The change of momentum is:

The change of momentum of the dart is 0.84 Nw.s
Is there any answers? Or is it asking you to choose?