1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Cerrena [4.2K]
3 years ago
12

What part of a standing sound wave does a musician seek in playing a musical note of a specific pitch?

Physics
2 answers:
marusya05 [52]3 years ago
6 0
The correct answer to the question above is that the magician is seeking the wavelength of the standing wave. The part of a standing sound wave, which is its wavelength, the magician is seeking when playing a musical note of a specific pitch. 
Anna35 [415]3 years ago
6 0

That is false. I just took the test and it is not the wavelength. The correct answer is antinode NOT wavelength.

You might be interested in
3.
abruzzese [7]

Answer:

I think they use it at night because they want to avoid involving themselves in road accident while crossing the street. When there are reflective strips on their clothes, drivers do notice them even at far ends of the street since the strips will reflect the rays from the car lights to the driver,hence, the driver notifies that there is a pedestrian crossing and therefore slows down.

3 0
3 years ago
Water (2510 g ) is heated until it just begins to boil. if the water absorbs 5.01×105 j of heat in the process, what was the ini
natka813 [3]
E=energy=5.09x10^5J = 509KJ 
<span>M=mass=2250g=2.25Kg </span>
<span>C=specific heat capacity of water= 4.18KJ/Kg </span>
<span>ΔT= change in temp= ? </span>
<span>E=mcΔT </span>
<span>509=(2.25)x(4.18)xΔT </span>
<span>509=9.405ΔT </span>
<span>ΔT=509/9.405=54.1degrees </span>
<span>Initial temp = 100-54 = 46 degrees </span>
<span>Hope this helps :)</span>
5 0
3 years ago
A satellite is in a circular orbit 21000 km above the Earth’s surface; i.e., it moves on a circular path under the influence of
mina [271]

Answer:

(orbital speed of the satellite) V₀ = 3.818 km

Time (t) = 4.5 × 10⁴s

Explanation:

Given that:

The radius of the Earth is 6.37 × 10⁶ m;    &

the acceleration of gravity at the satellite’s altitude is 0.532655 m/s

We can calculate the orbital speed of the satellite by using the formula:

Orbital Speed (V₀) = √(r × g)

radius of the orbit (r) = 21000 km + 6.37 × 10⁶ m

                                  = (2.1 × 10⁷ + 6.37 × 10⁶) m

                                  = 27370000

                                  = 2.737 × 10⁷m

Orbital Speed (V₀) = √(r × g)

Orbital Speed (V₀) = √(2.737 × 10⁷  × 0.532655 )

                              = 3818.215

                              = 3.818 × 10³

                             = 3.818 Km

To find the time it takes to complete one orbit around the Earth; we use the formula:

Time (t) = 2 π × \frac{r}{V_o}

            = 2 × 3.14 × \frac{2.737*10^7}{3.818*10^3}

            = 45019.28

            = 4.5 × 10 ⁴ s

6 0
3 years ago
A 1900 kg car rounds a curve of 55 m banked at an angle of 11 degrees? . If the car is traveling at 98 km/h, How much friction f
Nat2105 [25]

Answer:

22000 N

Explanation:

Convert velocity to SI units:

98 km/h × (1000 m / km) × (1 h / 3600 s) = 27.2 m/s

Draw a free body diagram.  There are three forces acting on the car.  Normal force perpendicular to the bank, gravity downwards, and friction parallel to the bank.

I'm going to assume the friction force is pointed down the bank.  If I get a negative answer, that'll just mean it's actually pointed up the bank.

Sum of the forces in the radial direction (+x):

∑F = ma

N sin θ + F cos θ = m v² / r

Sum of the forces in the y direction:

∑F = ma

N cos θ - F sin θ - W = 0

To solve the system of equations for F, first solve for N and substitute.

N = (W + F sin θ) / cos θ

Substituting:

((W + F sin θ) / cos θ) sin θ + F cos θ = m v² / r

(W + F sin θ) tan θ + F cos θ = m v² / r

W tan θ + F sin θ tan θ + F cos θ = m v² / r

W tan θ + F (sin θ tan θ + cos θ) = m v² / r

W tan θ + F sec θ = m v² / r

F sec θ = m v² / r - W tan θ

F = m v² cos θ / r - W sin θ

F = m (v² cos θ / r - g sin θ)

Given that m = 1900 kg, θ = 11°, v = 27.2 m/s, and r = 55 m:

F = 1900 ((27.2)² cos 11 / 55 - 9.8 sin 11)

F = 21577 N

Rounding to two sig-figs, you need at least 22000 N of friction force.

4 0
3 years ago
Write down applications of mechanics​
harkovskaia [24]

Answer:

Explanation:

applied Mechanics and its Growing Utilisation of Theoretical Mechanics.\

Structural Engineering.

Hydraulics.  

Mechanical Engineering.  

External Fluid Dynamics.

Planetary Sciences.

Life Sciences.

7 0
3 years ago
Other questions:
  • If the density of a diamond is 3.5 g/cm", what would be the mass of a diamond whose
    11·1 answer
  • Which statement accurately describes a balanced force?
    11·1 answer
  • A motorcycle has a magnet attached to the rim of its front wheel. The front tire has a diameter of 60 cm. A magnetic pickup is a
    15·1 answer
  • An object of mass 2.5 kg has a momentum &lt; 3, 6, 7 &gt; kg m/s. At this instant the object is acted on a by a force &lt; 50, 5
    12·1 answer
  • A comet has a period of 324 years; in other words, it orbits the Sun in 324 years. Most likely, this comet came from...(Hint: 32
    12·1 answer
  • Which statement is true about the part of the electromagnetic spectrum that human eyes can detect?
    5·2 answers
  • A proton traveling due west in a region that contains only a magnetic field experiences a vertically upward force (away from the
    13·2 answers
  • How do you calculate change in momentum
    13·1 answer
  • Describe the parts of a lever. Include the following terms (fulcrum, resistance arm and effort arm).
    5·1 answer
  • How do biological and environmental factors affect behavior?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!