Answer:
The output is 5
Step-by-step explanation:
-4 is the input (x value). To find the output, you have to find where -4 is on the line. -4 is on the line when 5 is the y coordinate (output).
Answer:
The sample size required is, <em>n</em> = 502.
Step-by-step explanation:
The (1 - <em>α</em>)% confidence interval for population proportion is:

The margin of error is:

Assume that 50% of the people would support this political candidate.
The margin of error is, MOE = 0.05.
The critical value of <em>z</em> for 97.5% confidence level is:
<em>z</em> = 2.24
Compute the sample size as follows:

![n=[\frac{z_{\alpha/2}\times \sqrt{\hat p(1-\hat p)}}{MOE}]^{2}](https://tex.z-dn.net/?f=n%3D%5B%5Cfrac%7Bz_%7B%5Calpha%2F2%7D%5Ctimes%20%5Csqrt%7B%5Chat%20p%281-%5Chat%20p%29%7D%7D%7BMOE%7D%5D%5E%7B2%7D)
![=[\frac{2.24\times \sqrt{0.50(1-0.50)}}{0.05}]^{2}\\\\=501.76\\\\\approx 502](https://tex.z-dn.net/?f=%3D%5B%5Cfrac%7B2.24%5Ctimes%20%5Csqrt%7B0.50%281-0.50%29%7D%7D%7B0.05%7D%5D%5E%7B2%7D%5C%5C%5C%5C%3D501.76%5C%5C%5C%5C%5Capprox%20502)
Thus, the sample size required is, <em>n</em> = 502.
Answer:
m=-1/3
Step-by-step explanation:
To find the slope you have to use the equation:y₂-y₁ divided by x₂-x₁
So you would have 3-4 divided by 0-(-3)
And then you would get -1/3
Let's rewrite the binomial as:


Using the binomial expansion, we get:

For the 15th term, we want the term where r is equal to 14, because of the fact that the first term starts when r = 0. Thus, for the 15th term, we need to include the 0th or the first term of the binomial expansion.
Thus, the fifteenth term is: