Step-by-step explanation:
the answers is 90. because 75.8
Answer:
42
Step-by-step explanation:
Angle ABD = Angle CBD + Angle ABC
You know ABD is 70, CBD and ABC are in terms of x
70 = 5x + 13 + 3x + 33
70 - 13 - 33 = 8x
24 = 8x
3 = x
Replacing x in Angle ABC:
3 * 3 + 33 = 42
<span>
<u><em>Answer:</em></u>sin (C)
<u><em>Explanation:</em></u><u>In a right-angled triangle, special trig functions can be applied. These functions are as follows:</u>
sin (theta) = </span>

<span>
cos (theta) = </span>

<span>
tan (theta) = </span>

<span>
<u>Now, let's check the triangle we have:</u>
<u>We have two options:</u>
<u>First option:</u>5 is the hypotenuse of the triangle
4 is the side adjacent to angle B
Therefore, we can apply the <u>cos function</u>:
cos (B) = </span>

<span>
<u>Second option:</u>5 is the hypotenuse of the triangle
4 is the side opposite to angle C
Therefore, we can apply the <u>sin function</u>:
sin (C) = </span>

<span>
Among the two options, the second one is the one found in the choices. Therefore, it will be the correct one.
Hope this helps :)
</span>
Answer:
I think you are missing something from the question, but if you were to find out how much you would get paid for a certain amount of hours from $12 per hour, then the formula would be:
Step-by-step explanation:
Let h = no. of hours worked
$12 * h
Answer:
- y = 81-x
- the domain of P(x) is [0, 81]
- P is maximized at (x, y) = (54, 27)
Step-by-step explanation:
<u>Given</u>
- x plus y equals 81
- x and y are non-negative
<u>Find</u>
- P equals x squared y is maximized
<u>Solution</u>
a. Solve x plus y equals 81 for y.
y equals 81 minus x
__
b. Substitute the result from part a into the equation P equals x squared y for the variable that is to be maximized.
P equals x squared left parenthesis 81 minus x right parenthesis
__
c. Find the domain of the function P found in part b.
left bracket 0 comma 81 right bracket
__
d. Find dP/dx. Solve the equation dP/dx = 0.
P = 81x² -x³
dP/dx = 162x -3x² = 3x(54 -x) = 0
The zero product rule tells us the solutions to this equation are x=0 and x=54, the values of x that make the factors be zero. x=0 is an extraneous solution for this problem so ...
P is maximized at (x, y) = (54, 27).