a. The disk starts at rest, so its angular displacement at time
is

It rotates 44.5 rad in this time, so we have

b. Since acceleration is constant, the average angular velocity is

where
is the angular velocity achieved after 6.00 s. The velocity of the disk at time
is

so we have

making the average velocity

Another way to find the average velocity is to compute it directly via

c. We already found this using the first method in part (b),

d. We already know

so this is just a matter of plugging in
. We get

Or to make things slightly more interesting, we could have taken the end of the first 6.00 s interval to be the start of the next 6.00 s interval, so that

Then for
we would get the same
.
Answer:
9.4
Explanation:
magnitude is the sum of the squares.

If you are given horizontal and vertical components, treat those as the rise and run of a triangle, the rise of 8 with a run of 5 and you want to find the hypotenuse.
How do you find the long side of a triangle?
Answer:
The second system must be set in motion
seconds later
Explanation:
The oscillation time, T, for a mass, m, attached to spring with Hooke's constant, k, is:

One oscillation takes T secondes, and that is equivalent to a 2π phase. Then, a difference phase of π/2=2π/4, is equivalent to a time t=T/4.
If the phase difference π/2 of the second system relative to the first oscillator. The second system must be set in motion
seconds later
Answer:
the answer from my side is both vertical and horizontal