In middle school, the formula you'll use most often when you're
working with acceleration is . . .
Acceleration = (change in speed during some time) / (time for the change)
Answer:
Work is the energy transferred to or from an object via the application of force along a displacement.
How much work in J does the string do on the boy if the boy stands still?
<span>answer: None. The equation for work is W = force x distance. Since the boy isn't moving, the distance is zero. Anything times zero is zero </span>
<span>--------------------------------------... </span>
<span>How much work does the string do on the boy if the boy walks a horizontal distance of 11m away from the kite? </span>
<span>answer: might be a trick question since his direction away from the kite and his velocity weren't noted. Perhaps he just set the string down and walked away 11m from the kite. If he did this, it is the same as the first one...no work was done by the sting on the boy. </span>
<span>If he did walk backwards with no velocity indicated, and held the string and it stayed at 30 deg the answer would be: </span>
<span>4.5N + (boys negative acceleration * mass) = total force1 </span>
<span>work = total force1 x 11 meters </span>
<span>--------------------------------------... </span>
<span>How much work does the string do on the boy if the boy walks a horizontal distance of 11m toward the kite? </span>
<span>answer: same as above only reversed: </span>
<span>4.5N - (boys negative acceleration * mass) = total force2 </span>
<span>work = total force2 x 11 meters</span>
Answer:
Explanation:
The force of attraction between 2 masses.
Answer:

Where
represent the force for each of the 5 cases
presented on the figure attached.
Explanation:
For this case the figure attached shows the illustration for the problem
We have an inverse square law with distance for the force, so then the force of gravity between Earth and the spaceship is lower when the spaceship is far away from Earth.
Th formula is given by:

Where G is a constant 
represent the mass for the earth
represent the mass for the spaceship
represent the radius between the earth and the spaceship
For this reason when the distance between the Earth and the Spaceship increases the Force of gravity needs to decrease since are inversely proportional the force and the radius, and for the other case when the Earth and the spaceship are near then the radius decrease and the Force increase.
Based on this case we can create the following rank:

Where
represent the force for each of the 5 cases
presented on the figure attached.