Gravity on the surface = 4 m/s^2
Now, the acceleration due to centripetal motion, a = v^2/R
Where,
v= 10^3 m/s, R = 10^6 m
Then,
a = (10^3)^2/(10^6) = 1 m^2/s
The net gravitational acceleration = 4-1 = 3 m/s^2
The reading on the spring scale = ma = 40*3 = 120 N
Answer:
66.26 m/s
Explanation:
Horizontal velocity, Vx = 55.3 m/s
Vertical velocity, Vy = 36.5 m/s
The value of the resultant velocity is given by the vector sum of the two velocities which are acting at 90°.


V = 66.26 m/s
Thus, the velocity of the vehicle is 66.26 m/s along its descent path.
When the car comes to a stop, the final velocity must be 0 m/s.
Since the car js decelerating in a forward direction, acceleration must be negative.
final v = initial v + a•t
0 = 20 + (-6)t
t = 3.33s
Explanation:
It is given that,
Wavelength of monochromatic light, 
Slits separation, 
(a) We need to find the angle corresponding to the first bright fringe. For bright fringe the equation is given as :
, n = 1



(b) We need to find the angle corresponding to the second dark fringe, n = 1
So, 




Hence, this is the required solution.
If im not mistaken the truck traveled 216 meters.