Answer:
2. Move faster
Explanation:
Because you lighten the weight and pushed at the same speed it is easier to push the 400-grams than the 800-grams.
Have a wonderful day!
Answer:
1. Hydrogen
Atomic # = 1
Atomic Mass = 1.00794 ( If you round it it's 1.008 )
# of protons = 1
# of neutrons = none
# of electrons = 1
Answer:
Umm that's a personal question. All u have to do is say when have u pushed your personal limits....... Ummm one for me is when i had to try out for a select soccer and that is past my comfort zone.
Explanation:
To solve this problem it is necessary to apply the kinematic equations of angular motion.
Torque from the rotational movement is defined as

where
I = Moment of inertia
For a disk
Angular acceleration
The angular acceleration at the same time can be defined as function of angular velocity and angular displacement (Without considering time) through the expression:

Where
Final and Initial Angular velocity
Angular acceleration
Angular displacement
Our values are given as






Using the expression of angular acceleration we can find the to then find the torque, that is,




With the expression of the acceleration found it is now necessary to replace it on the torque equation and the respective moment of inertia for the disk, so




Therefore the torque exerted on it is 
First, balance the reaction:
_ KClO₃ ==> _ KCl + _ O₂
As is, there are 3 O's on the left and 2 O's on the right, so there needs to be a 2:3 ratio of KClO₃ to O₂. Then there are 2 K's and 2 Cl's among the reactants, so we have a 1:1 ratio of KClO₃ to KCl :
2 KClO₃ ==> 2 KCl + 3 O₂
Since we start with a known quantity of O₂, let's divide each coefficient by 3.
2/3 KClO₃ ==> 2/3 KCl + O₂
Next, look up the molar masses of each element involved:
• K: 39.0983 g/mol
• Cl: 35.453 g/mol
• O: 15.999 g/mol
Convert 10 g of O₂ to moles:
(10 g) / (31.998 g/mol) ≈ 0.31252 mol
The balanced reaction shows that we need 2/3 mol KClO₃ for every mole of O₂. So to produce 10 g of O₂, we need
(2/3 (mol KClO₃)/(mol O₂)) × (0.31252 mol O₂) ≈ 0.20835 mol KClO₃
KClO₃ has a total molar mass of about 122.549 g/mol. Then the reaction requires a mass of
(0.20835 mol) × (122.549 g/mol) ≈ 25.532 g
of KClO₃.