I think the answer is C. 02
Na3 = 23*3 = 69
P = 31
O4 = 16*4 =64
69+ 31+ 64 = 164g/mol
0.75mol = 0.75 * 164 = 123 g
The question is incomplete, the complete question is;
The lightest particle among the following is:
• Electron •Proton • Neutron • Alpha
Answer:
Electron
Explanation:
There three basic subatomic particles are electrons, protons and neutrons. Both protons and neutrons are found in the nuclear and both contribute towards the mass of the atom. The alpha particle has the same mass as the helium nucleus.
However, the electrons are found in orbiit and have a negligible mass compared to the mass of the protons and neutrons. The mass of the electron is about 9.11 × 10^-31 Kg. This makes it the lightest of all the particles listed among the options.
Answer:
- The molarity of the student's sodium hydroxide solution is 0.0219 M
Explanation:
<u>1) Chemical reaction.</u>
a) Kind of reaction: neutralization
b) General form: acid + base → salt + water
c) Word equation:
- sodium hydroxide + oxalic acid → sodium oxalate + water
d) Chemical equation:
- NaOH + H₂C₂O₄ → Na₂C₂O₄ + H₂O
b) Balanced chemical equation:
- 2NaOH + H₂C₂O₄ → Na₂C₂O₄ + 2H₂O
<u>2) Mole ratio</u>
- 2mol Na OH : 1 mol H₂C₂O₄ :1 mol Na₂C₂O₄ : 2 mol H₂O
<u>3) Starting amount of oxalic acid</u>
- mass = 28 mg = 0.028 g
- molar mass = 90.03 g/mol
- Convert mass in grams to number of moles, n:
n = mass in grams / molar mass = 0.028 g / 90.03 g/mol = 0.000311 mol
<u>4) Titration</u>
- Volume of base: 28.4 mL = 0.0248 liter
- Concentration of base: x (unknwon)
- Number of moles of acid: 2.52 mol (calculated above)
- Proportion using the theoretical mole ratio (2mol Na OH : 1 mol H₂C₂O₄)

That means that there are 0.000622 moles of NaOH (solute)
<u>5) Molarity of NaOH solution</u>
- M = n / V (liter) = 0.000622 mol / 0.0284 liter = 0.0219 M
That is the correct number using <em>three signficant figures</em>, such as the starting data are reported.
Answer:
0
Explanation:
Since HI is a strong acid, the amoung of Hydrogen ions produced by it will be the same molar as the reactant. The negative log of the concentration will reveal that the pH is 0.