Explanation:
correct answer is g(x)=x+2
Answer:
The dependent variable is the number of clams developing from fertilized eggs.
The independent variable is the water temperature
The optimum temperature for clam development is 30 degrees centigrade.
Explanation:
The graph of the number of clams developing from fertilized eggs and water temperature is attached to this answer.
The independent variable is being manipulated in an experiment. As it changes, it produces a corresponding change in the dependent variable.
Here, the water temperature is the independent variable. As it changes, the number of clams developing from fertilized eggs (dependent variable) also changes alongside.
The optimum temperature is the temperature at which the greatest number of clams developing from fertilized eggs is produced. We can see from the graph that this temperature is 30 degrees centigrade.
The answers to the questions are as follows;
- It would gain three electrons
- The difference in their electronegativities.
- The elements have filled Valence levels
- potassium (K) with a 1+ charge
- ClO-
Question 1:
- How would the electron configuration of nitrogen change to make a stable configuration?
Since Nitrogen has 5 Valence electrons, it needs 3 electrons to attain it's octet configuration. As such, it gains 3 electrons.
Question 2:
- Which quantity determines how two atoms bond.
The quantity which determines how two atoms bond is The difference in their electronegativities.
Question 3:
- Which statement best explains why the elements in Group 18 do not have electronegativity values.
This is because the elements have filled Valence levels.
Question 4:
- Based on patterns in the periodic table, which ion has a stable valence electron configuration
The ion which has a stable Valence electron configuration is potassium (K) with a 1+ charge
Question 5;
- Which chemical formula represents a polyatomic ion?
The chemical formula which represents a polyatomic ion is; ClO-
Answer:
H2SO3 + 2CsOH —> Cs2SO3 + 2H2O
Explanation:
When sulfurous acid react with caesium hydroxide, caesium sulfite and water are formed according to the equation:
H2SO3 + CsOH —> Cs2SO3 + H2O
Next, we balanced the equation by putting 2 in front of CsOH and 2 in front of H2O i.e
H2SO3 + 2CsOH —> Cs2SO3 + 2H2O
The half-life of any substance is the amount of time taken for half of the original quantity of the substance present to decay. The half-life of a radioactive substance is characteristic to itself, and it may be millions of years long or it may be just a few seconds.
In order to determine the half-life of a substance, we simply use:
t(1/2) = ln(2) / λ
Where λ is the decay constant for that specific isotope.