Answer:
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.
slow
fast
To determine the net chemical equation, we will simply add the above two equations, we get:
![Rate=k[O_3][NO_2]^2](https://tex.z-dn.net/?f=Rate%3Dk%5BO_3%5D%5BNO_2%5D%5E2)
Order with respect to
is 1 and Order with respect to
is 2.
Thus the rate law will be:
The incoming and outgoing energy at the Earth’s surface must balance. Or in other words, the flow of energy into the atmosphere must be balanced by an equal flow of energy out of the atmosphere and back to space.<span>
Earth's Energy balance describes how the incoming energy from the sun is used and returned to space. All </span>of the energy entering earth’s atmosphere comes from the sun. Half of it is absorbed by the earth’s surface i.e. the land and oceans, 30% is directly reflected back to space by clouds and 20% is absorbed by the atmosphere and clouds.<span>Earth's </span>actual<span> average global temperature is around 14° C (57 F).</span>
Answer:
81°C.
Explanation:
To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat released from water (Q = - 1200 J).
m is the mass of the water (m = 20.0 g).
c is the specific heat capacity of water (c of water = 4.186 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = final T - 95.0°C).
∵ Q = m.c.ΔT
∴ (- 1200 J) = (20.0 g)(4.186 J/g.°C)(final T - 95.0°C ).
(- 1200 J) = 83.72 final T - 7953.
∴ final T = (- 1200 J + 7953)/83.72 = 80.67°C ≅ 81.0°C.
<em>So, the right choice is: 81°C.</em>
The journey from earth to the nearest plant will take the longest
Compare it to the chart showing how base or acidic a substance is