Answer:
0.47 M
Explanation:
The concentration of the solution can be calculated using the following equation:

<u>Where:</u>
V: is the volume of the solution = 68.6x10⁻² L
η: is the moles of cobalt (II) sulfate
m: is the mass of cobalt (II) sulfate = 89.94 g
M: is the molar mass of cobalt (II) sulfate = 281.103 g/mol
The concentration of cobalt (II) sulfate is:
We used the molar mass of the cobalt (II) sulfate heptahydrate (281.103 g/mol) since it is one of the most common salts of cobalt.
Therefore, the concentration of a solution of cobalt (II) sulfate is 0.47 M (assuming that the cobalt (II) sulfate is heptahydrate).
I hope it helps you!
Answer is: <span>D. Tin atoms give electrons to lead(II) ions and are oxidized to tin(II) ions.
Chemical reaction: Sn</span>⁰ + Pb²⁺ → Sn²⁺ + Pb.
Tin atom (oxidation number 0) give two electrons to led ions, oxidation number of tin is greater now (oxidation number +2).
<span>Oxidation is loss of electrons.</span>
Answer : Option A) the arrangement of bonded atoms.
Explanation : A structural formula of certain molecule depicts the way the atoms are arranged in that particular molecule in any polyatomic species. It helps in deciding the chemical properties of that polyatomic molecule.
Explanation:
28.09 g of silicon contains 6.02×1023 6.02 × 10 23 silicon atoms.
Answer:
Hydrogen
Explanation:
It is considered a special element due to its flexibility in giving up & taking in electrons, therefore making it good for organic & inorganic chemistry. Hydrogen has only one proton and one electron and is the only element which has no neutrons. it is considered as the simplest element in the universe and gives a valid reason for it to be the most abundant and common element in the universe.
Hoped this helped! If this doesn't fit your 80 word count, you could shorten it.