Explanation:
In gases the molecules are held together by weak Vander waal forces. Due to this they have more kinetic energy and they tend to diffuse at a faster rate because of more number of collisions between the molecules.
That is why, its molecules readily spread into the atmosphere as compared to the molecules of solids and liquids. Also, when molecules of a gas collide with the walls of a container then they tend to come back at their initial position for a fraction of second or more.
Hence, gas collisions are elastic in nature.
According to Graham's law, rate of diffusion of a gas is inversely proportional to the square root of molar mass of the gas. Hence, more is the molecular weight of gas less likely it is able to diffuse into the surroundings.

Thus, we can conclude that following apply to gases.
- Gas collisions are elastic.
- Gases mix faster than solids or liquids.
- Gases with larger molecular weights diffuse slower than gases with lower molecular weights.
True. These ions are of a 2- charge. Oxygen is an example. It will form a 2- charge if ionize.
Mg- is the isoelectronic of Na
The reaction would produce bubbles of gas.
We can prepare 3-5 test tubes of acid with increasing concentrations. Then, we add antacid tablets to each and note the time taken for the tablet to dissolve and stop producing bubbles. The lesser the time taken, the greater the rate of reaction.
Answer:
4.43L is final volume of the ballon
Explanation:
Avogadro's law of ideal gases states that <em>equal volumes of gases, at the same temperature and pressure, have the same number of molecules</em>.
The formula is:

Where V and n are volume and moles of the gas in initial and final conditions.
If the initial conditions are 0.0145 moles and 2.54L and final amount of moles is 0.0253moles, final volume is:

V₂ = <em>4.43L is final volume of the ballon</em>