Answer:
Learning the formula.multiply mass accelebrations.the force(F)required to move an object of mass(M) with an acceleration (a) is given by the formula F = m x a.so, force = mass multiplied by accelebration.
Answer:
Negative 9.8 meters per second squared
Explanation:
The negative is for the direction (down, towards the center of the earth). Often this can be estimated as -10 m/s^2 to make calculations easier.
The direction of an electric field is determined from the behavior of a positive test charge that is set free in the electric field.This charge moves along a distinct vector showing the direction of the electric field Therefore the answer is b. a positive charge will move in the field.
Answer:
Momentum is always conserved, and kinetic energy may be conserved.
Explanation:
For an object moving on a horizontal, frictionless surface which makes a glancing collision with another object initially at rest on the surface, the type of collision experienced by this objects can either be elastic or an inelastic collision depending on whether the object sticks together after collision or separates and move with a common velocity after collision.
If the body separates and move with a common velocity after collision, the collision is elastic but if they sticks together after collision, the collision is inelastic.
Either ways the momentum of the bodies are always conserved since they will always move with a common velocity after collision but their kinetic energy may or may not be conserved after collision, it all depends whether they separates or stick together after collision and since we are not told in question whether or not they separate, we can conclude that their kinetic energy "may" be conserved.