Answer:
Polished surfaces reduce heat loss
Answer:
8.66 nano seconds
Explanation:
speed of k mesons ( v ) = c
m/s
Distance between counters ( d ) = 9.00 m
number of countable electrical pulses = 1000 counts in first counter and 250 in second counter
time of travel = d / v = 18 /
secs
Next write the decay of particles in lab frame
finally calculate the half life of Meson in its own frame
( t 1/2) of meson in its own frame = 8.66 n-secs
attached below is a detailed solution
<h3>
Answer:</h3>
5.395 × 10^8 Watts
<h3>
Explanation:</h3>
<u>We are given;</u>
- Rate of flow is 1.1 × 10^6 kg/s
- Distance is 50.0 m
- Gravitational acceleration is 9.8 m/s²
We are required to calculate the power that is generated by the falling water
- Power is the rate of work done
- It is given by dividing the energy or work done by time
But; work done = Force × distance
Therefore;
Power = (F × d) ÷ time
The rate is 1.1 × 10^ 6 Kg/s
But, 1 kg = 9.81 N
Therefore, the rate is equivalent to 1.079 × 10^7 N/s
Thus,
Power = Rate (N/s) × distance
= 1.079 × 10^7 N/s × 50.0 m
= 5.395 × 10^8 Watts
The power generated from the falling water is 5.395 × 10^8 Watts
Answer:
The speed of the object is (
)m/s
The magnitude of the acceleration is 4.00m/s²
Explanation:
Given - position vector;
r = (2.0 + 3.00t)i + (3.0 - 2.00t²)j -------------------(i)
To get the speed vector (
), take the first derivative of equation (i) with respect to time t as follows;
= 
=
=
------------------------(ii)
To get the acceleration vector (
), take the first derivative of the speed vector in equation(ii) as follows;


j
The magnitude of the acceleration |a| is therefore given by
|a| = |-4.00|
|a| = 4.00 m/s²
In conclusion;
the speed of the object is (
)m/s
the magnitude of the acceleration is 4.00m/s²