Answer:
u=36.8m/s
Explanation:
because of the acceleration is a constant acceleration we can use one of the "SUVAT" equations
u^2=v^2-2ā*s. where:
u^2 stands for intial velocity
v^2 stands for final velocity
since the cougar skidded to a complete stop the final velocity is zero.
u^2=v^2-2ā*s
u^2=(0)^2 -2(-2.87 m/s^2)*236 m
u^2=0+5.74m/s^2* 236m
u^2=1354.64m^2/s^2
u=√1354.64m^2/s^2
u=36.8m/s (approximate value)
when ever the acceleration is constant you can use one of the following equation to find the required value.
1. v = u + at. (no s)
2. s= 1/2(u+v)t. (no ā)
3. s=ut + 1/2at^2. ( no v)
4. v^2=u^2 + 2āS. (no t). 5. s= vt - 1/2at^2. (no u)
Answer:
Furthermore, the Pythagorean theorem works when the two added vectors are at right angles to one another - such as for adding a north vector and an east vector.
We will put the number of trips in the first column, the miles driven in the second column and gallons of fuel used in the third column.
8 7,680 1,010
7 9,940 1,330
12 14,640 1,790
12 13,920 2,050
Atmosphere
Atmospheric gas from prehistoric eras is found trapped in glaciers in the form of bubbles. These gas bubbles are the basis of studying ice cores as they provide us with accurate estimates of the conditions of past climates. The bubbles allow us to determine the composition of atmospheric air, such as the carbon dioxide and methane concentrations, as well as allow us to determine air temperatures in the past.
Answer:
a) 200A
b) 10.2V
c) 2.04kW
d)
I=80A
V=4.08V
P=0.326kW
Explanation:
Here we have a circuit of one power source and two resistors in series, the first question is asking for the current, so according to Ohm's Law:

Where R is the equivalent resistance of the resistors in series
![R=0.0510+0.0090=0.0600[ohm]](https://tex.z-dn.net/?f=R%3D0.0510%2B0.0090%3D0.0600%5Bohm%5D)

To calculate the voltage dropped by the motor we have to apply the voltage divider rule:

The power dissipated supplied to the motor is given by:

now solving adding a 0.0900 ohm resistor:


