The electromagnetic force, and the gravitational force<span>.
</span>
Answer:
Car H
Explanation:
Frictional force is a resistant force. It is given as:
F = u*m*g
Where u = coefficient of friction
m = mass
g = acceleration due to gravity
From the formula above, we see that frictional force is dependent on the mass of object and the coefficient of friction.
Since they all have the same tires, the coefficient of friction between the tire and the floor is the same for each car. Acceleration due to gravity, g, is constant.
The only factor that determines the frictional force of each car is the mass. Hence, the more the mass, the more the frictional force.
So, the most massive car will have the most frictional force and hence, will come to a stop quicker than the others. The least massive car will have the least frictional force and so, will take a longer time to stop.
Answer:

Explanation:
<u>Vertical Launch Upwards</u>
In a vertical launch upwards, an object is launched vertically up from a height H without taking into consideration any kind of friction with the air.
If vo is the initial speed and g is the acceleration of gravity, the maximum height reached by the object is given by:

The object referred to in the question is thrown from a height H=0 and the maximum height is hm=77.5 m.
(a)
To find the initial speed we solve for vo:



(b)
The maximum time or the time taken by the object to reach its highest point is calculated as follows:



Percent error is the difference between the experimental value and theoretical value and measures the accuracy of the result found. The larger the error, lesser is the accuracy and vice versa.
Solution:
It is a mathematical way of showing accuracy
The higher the percent error, the less accurate the data set,
The answer is c. if itis heavier, u have to push hardier or it to move the same distance. make sense??