Answer:
<em>d. unchanged.</em>
Explanation:
The frequency of a wave is dependent on the speed of the wave and the wavelength of the wave. The frequency is characteristic for a wave, and does not change with distance. This is unlike the amplitude which determines the intensity, which decreases with distance.
In a wave, the velocity of propagation of a wave is the product of its wavelength and its frequency. The speed of sound does not change with distance, except when entering from one medium to another, and we can see from
v = fλ
that the frequency is tied to the wave, and does not change throughout the waveform.
where v is the speed of the sound wave
f is the frequency
λ is the wavelength of the sound wave.
The positively charged atmosphere attracts negatively charged spider silk, might electrostatic force play in spider dispersal, according to a recent study.
Answer: Option C
<u>Explanation:</u>
The positive charge present in upper of the atmosphere and the negative charge on planet’s surface. During cloudless skies days, the air possesses a voltage of nearly around 100 volts for each and every meter from above the ground.
Ballooning spiders process within this planetary electric field. When their silk relieve their bodies then it picks up a negative charge. This oppose the similar negative charges on the surfaces on which the spiders settles and create sufficient force to lift them into the air. And spiders can hike those forces by climbing onto blades of grass,twigs, or leaves.
Solution :
Given :
Mass attached to the spring = 4 kg
Mass dropped = 6 kg
Force constant = 100 N/m
Initial amplitude = 2 m
Therefore,
a). 

= 10 m/s
Final velocity, v at equilibrium position, v = 5 m/s
Now, 
A' = amplitude = 1.4142 m
b). 
m' = 2m
Hence, 
c). 

Therefore, factor 
Thus, the energy will change half times as the result of the collision.
Answer:
1,3,5
Explanation:
i think maybe dont come at me