<h2>
Answers:</h2>
-The first direct detection of gravitational waves came in 2015
-The existence of gravitational waves is predicted by Einstein's general theory of relativity
-Gravitational waves carry energy away from their sources of emission
<h2>
Explanation:</h2>
Gravitational waves were discovered (theoretically) by Albert Einstein in 1916 and "observed" for the first time in direct form in 2015 (although the results were published in 2016).
These gravitational waves are fluctuations or disturbances of space-time produced by a massive accelerated body, modifying the distances and the dimensions of objects in an imperceptible way.
In this context, an excellent example is the system of two neutron stars that orbit high speeds, producing a deformation that propagates like a wave,<u> in the same way as when a stone is thrown into the water</u>. So, in this sense, gravitational waves carry energy away from their sources
.
Therefore, the correct options are D, E and F.
Answer:
2.145×10^-10 V or 0.2145nV
Explanation:
From hf=eV
h= Plank's constant = 6.6×10^-34JS
f= frequency of the electromagnetic wave = 5.2×10^4 Hz
e= electronic charge= 1.6×10^-19 C
V= voltage
V= hf/e
V= 6.6×10^-34JS × 5.2×10^4 Hz/ 1.6×10^-19 C
V= 2.145×10^-10 V or 0.2145nV
Therefore the voltage created is 2.145×10^-10 V or 0.2145nV
First we find the energy level with the following formula, where a is the energy level, n1 is the final energy level, n2 is the starting energy level and r is Rydberg's constant in Joules

We insert the values


The wavelength is found with this formula, where h is Planck's constant and c is the speed of light

Finally we insert the values

Which is the same as 93.8 nm
Energy I believe. If there is no energy given or taken the object will not react.