Explanation:
a. Average kinetic energy is directly proportional to absolute Kelvin temperature of a gas.
Yes
b. There are no attractive forces and repulsive forces between gas molecules.
Yes
C. Atoms are neither created nor destroyed by ordinary chemical reactions.
No
d. The volume occupied by all of the gas molecules in a container is negligible compared to the volume of the container
Yes
The kinetic molecular theory is one of such theories used to explain the forces between molecules and the energy they posses.
According to the theory;
- The temperature of gas is proportional to the average kinetic energy.
- Molecules are independent of one another and the force of attraction and repulsion between them is negligible.
- volume occupied by gases is negligible compared to the volume of the container.
Law of conservation of matter states that "atoms are neither created nor destroyed by ordinary chemical reactions".
learn more:
Kinetic molecular theory brainly.com/question/12362857
#learnwithBrainly
To be honest I don’t even know
Answer is: the molar mass od sodium carbonate (Na₂CO₃) is 106.0 g/mol.
M(Na₂CO₃) = 2 · Ar(Na) + Ar(C) + 3 · Ar(O).
M(Na₂CO₃) = 2 · 23 + 12 + 3 · 16 · g/mol.
M(Na₂CO₃) = 46 + 12 + 48 · g/mol.
M(Na₂CO₃) = 106 g/mol; molar mass of sodium carbonate.
Ar is relative atomic mass (the ratio of the average mass of atoms of a chemical element to one unified atomic mass unit) of an element.
Answer:
P = 0.0009417 atm
Or,
P = 9.417 × 10⁻⁴ atm
Or,
P = 0.0954157 kPa
Or,
P = 0.715677 mmHg (Torr)
Explanation:
Data Given:
Moles = n = 3.2 mol
Temperature = T = 312 K
Pressure = P = ?
Volume = V = 87 m³ = 87000 L
Formula Used:
Let's assume that the gas is acting as an Ideal gas, the according to Ideal Gas Equation,
P V = n R T
where; R = Universal Gas Constant = 0.082057 atm.L.mol⁻¹.K⁻¹
Solving Equation for P,
P = n R T / V
Putting Values,
P = (3.2 mol × 0.082057 atm.L.mol⁻¹.K⁻¹ × 312 K) ÷ 87000 L
P = 0.0009417 atm
Or,
P = 9.417 × 10⁻⁴ atm
Or,
P = 0.0954157 kPa
Or,
P = 0.715677 mmHg (Torr)