The first thing you should know in this case is the following definition:
PV = nRT
Then, as the temperature is constant, then:
PV = k
Then, we have two states:
P1V1 = k
P2V2 = k
We can then equalize both equations:
P1V1 = P2V2
Substituting the values:
(1.25) * (101) = (2.25) * (P2)
Clearing P2:
P2 = ((1.25) * (101)) /(2.25)=56.11Kpa
answer:
the new pressure inside the jar is 56.11Kpa
The meters per second
+1t a second / 2t

- P is power
- R is resistance

Hence


- Therefore if power is low then resistance will be high.
The first bulb has less power hence it has greater filament resistance.
Answer:
Time = 11.60 seconds.
Explanation:
Speed can be defined as distance covered per unit time. Speed is a scalar quantity and as such it has magnitude but no direction.
Mathematically, speed is given by the equation;

Given the following data;
Speed = 0.711m/s
Distance = 8.25m
To find the time;
Making time the subject of formula, we have;
Substituting into the equation, we have;

Time = 11.60 secs.
Answer:
1keff=1k1+1k2
see further explanation
Explanation:for clarification
Show that the effective force constant of a series combination is given by 1keff=1k1+1k2. (Hint: For a given force, the total distance stretched by the equivalent single spring is the sum of the distances stretched by the springs in combination. Also, each spring must exert the same force. Do you see why?
From Hooke's law , we know that the force exerted on an elastic object is directly proportional to the extension provided that the elastic limit is not exceeded.
Now the spring is in series combination
F
e
F=ke
k=f/e.........*
where k is the force constant or the constant of proportionality
k=f/e
............................1
also for effective force constant
divide all through by extension
1) Total force is
Ft=F1+F2
Ft=k1e1+k2e2
F = k(e1+e2) 2)
Since force on the 2 springs is the same, so
k1e1=k2e2
e1=F/k1 and e2=F/k2,
and e1+e2=F/keq
Substituting e1 and e2, you get
1/keq=1/k1+1/k2
Hint: For a given force, the total distance stretched by the equivalent single spring is the sum of the distances stretched by the springs in combination.