Answer:
The magnetic field in the System is 0.095T
Explanation:
To solve the exercise it is necessary to use the concepts related to Faraday's Law, magnetic flux and ohm's law.
By Faraday's law we know that

Where,
electromotive force
N = Number of loops
B = Magnetic field
A = Area
t= Time
For Ohm's law we now that,
V = IR
Where,
I = Current
R = Resistance
V = Voltage (Same that the electromotive force at this case)
In this system we have that the resistance in series of coil and charge measuring device is given by,

And that the current can be expressed as function of charge and time, then

Equation Faraday's law and Ohm's law we have,



Re-arrange for Magnetic Field B, we have

Our values are given as,





Replacing,


Therefore the magnetic field in the System is 0.095T
Answer:
The velocity is 
Explanation:
From the question we are told that
The mass of the bullet is 
The initial speed of the bullet is 
The mass of the target is 
The initial velocity of target is 
The final velocity of the bullet is is 
Generally according to the law of momentum conservation we have that

=> 
=> 
Answer:
The tension is 
Explanation:
The free body diagram of the question is shown on the first uploaded image From the question we are told that
The distance between the two poles is 
The mass tied between the two cloth line is 
The distance it sags is 
The objective of this solution is to obtain the magnitude of the tension on the ends of the clothesline
Now the sum of the forces on the y-axis is zero assuming that the whole system is at equilibrium
And this can be mathematically represented as

To obtain
we apply SOHCAHTOH Rule
So 
![\theta = tan^{-1} [\frac{opp}{adj} ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20tan%5E%7B-1%7D%20%5B%5Cfrac%7Bopp%7D%7Badj%7D%20%5D)
![= tan^{-1} [\frac{1}{7}]](https://tex.z-dn.net/?f=%3D%20tan%5E%7B-1%7D%20%5B%5Cfrac%7B1%7D%7B7%7D%5D)






Answer:
The law of conservation of energy
Explanation: