Answer:
you could measure several properties of
the unknown liquid and compare them with the properties of known
substances. You might observe and measure such properties as color,
odor, texture, density, boiling point, and freezing point.
Answer:
Explanation:
Given: Density of blood = 1.03 × 10³ Kg/m³, Height = 1.93 m g = 9.8 m/s²
pressure at the brain is equal to atmospheric pressure. = Hydro-static
pressure(ρ₀)
∴ pressure of the foot = pressure of the brain(ρ₀) + ( density of blood × acceleration due to gravity × height)(ρgh)
Hydro-static pressure = pressure at the feet- pressure at the brain(ρ₀)
Hydro-static pressure (Δp) = (ρgh + ρ₀) - ρ₀ = ρgh
Hydro-static pressure = 1.03 × 10³ × 9.8 × 1.93 = 1.948 × 10⁴ Pa
∴ Hydro-static pressure ≈ 1.95 × 10⁴ Pa
For the work-energy theorem, the work needed to stop the bus is equal to its variation of kinetic energy:

where
W is the work
Kf is the final kinetic energy of the bus
Ki is the initial kinetic energy of the bus
Since the bus comes at rest, its final kinetic energy is zero:

, so the work done by the brakes to stop the bus is

And the work done is negative, because the force applied by the brake is in the opposite direction to that of the bus motion.
Answer:
<em>There will be an increase in potential difference.</em>
Explanation:
As we know that the potential difference depends upon the capacitance.
ΔV = Q/C
When battery is disconnected the charge remains constant on the plates but the capacitance decreases. As the capacitance has an inverse relation with the potential difference, there will be an increase in it.
In addition to that the potential difference can also be defined as the product of field and distance between the plates. As the charge is constant so the field is constant. Upon increasing the separation between the plates the potential difference will also increased.