Answer:
20 m
Explanation:
Given:
v₀ = 15 m/s
v = -25 m/s
a = -10 m/s²
Find: Δy
v² = v₀² + 2aΔy
(-25 m/s)² = (15 m/s)² + 2 (-10 m/s²) Δy
Δy = 20 m
Answer:
162.8 K
Explanation:
initial current = io
final current, i = io/8
Let the potential difference is V.
coefficient of resistivity, α = 43 x 10^-3 /K
Let the resistance is R and the final resistance is Ro.
The resistance varies with temperature
R = Ro ( 1 + α ΔT)
V/i = V/io (1 + α ΔT )
8 = 1 + 43 x 10^-3 x ΔT
7 = 43 x 10^-3 x ΔT
ΔT = 162.8 K
Thus, the rise in temperature is 162.8 K.
In order to solve this problem, we must first find out the value of each line on the number line. However, we can make this problem more simple by ignoring every interval except for the ones between 0 and 6. There are three total intervals in between 0 and 6 (including 6 and excluding 0). Therefore, we can do 6/2, and get an interval value of 2. This means that each line adds a value of 2. Since the car is only one line past zero, we only have to add one value of 2. Since 0 + 2 = 2, our final answer is C. 2.
Hope this helps!
Answer:
An object changes position if it moves relative to a reference point. The change in position is determined by the distance and direction of an object's change in position from the starting point (displacement). Direction • Direction is the line, or path along which something is moving, pointing, or aiming.
Explanation:
Answer:
gravitational potential energy:
GPE = m g h
kinetic energy:
KE = 1/2 m v^2