We can use the formula of motion in physics (2nd law od newton) in this problem:
x direction: Fsin ∅ = ma
y direction: Fcos ∅ -mg = 0
∅ is equal to sin ∅ / cos ∅ or x/y
tan ∅ = ma / mg = a /g
Applying acceleration formula:
v = vo + at ; 28 = 0 + 6a ; a = 4.67 m/s^2
∅ = tan-1 (a/g) = tan-1 (4.67/9.81) = <span>25.4 degrees.</span>
B) 20 cm
The height and distance will be the same. Only the image will be laterally inverted.
<h3>
Answer:</h3>
209.236 kg · m/s
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Physics</u>
<u>Momentum</u>
Momentum Formula: P = mv
- P is momentum (in kg · m/s)
- m is mass (in kg)
- v is velocity (in m/s)
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
m₁ = 87.2 kg
v₁ = 2.87 m/s
m₂ = 0.0520 kg
v₂ = 789 m/s
<u>Step 2: Find Momentums</u>
<em>Football Player</em>
- Substitute [MF]: P = (87.2 kg)(2.87 m/s)
- Multiply: P = 250.264 kg · m/s
<em>Bullet</em>
- Substitute [MF]: P = (0.0520 kg)(789 m/s)
- Multiply: P = 41.028 kg · m/s
<u>Step 3: Find difference</u>
- Define equation: P₁ - P₂
- Substitute: 250.264 kg · m/s - 41.028 kg · m/s
- Subtract: 209.236 kg · m/s
Technological advances clearly.
Theories change due to other peoples view on the matter and how they experiment with it, but Technology advancements are the greatest factor of all. I mean seriously, we wouldn't know of cells before the microscope and when they first invented it, it advanced further and now we can see things on a whole deeper lever.
The car will move in a speed of 45 meter per second