Weight is the measurement of the pull of gravity on an object, while mass is the measurement of the amount of matter that an object contains.
Answer:
The asteroid's acceleration at this point is
Explanation:
The equation that governs the trajectory of asteroid is given by :

The velocity of asteroid is given by :

At some point during the trip across the screen, the asteroid is at rest. It means, v = 0
So,
Acceleration,
Put t = 0.971 s

So, the asteroid's acceleration at this point is
and it is decelerating.
Given:
Gasoline pumping rate, R = 5.64 x 10⁻² kg/s
Density of gasoline, D = 735 kg/m³
Radius of fuel line, r = 3.43 x 10⁻³ m
Calculate the cross sectional area of the fuel line.
A = πr² = π(3.43 x 10⁻³ m)² = 3.6961 x 10⁻⁵ m²
Let v = speed of pumping the gasoline, m/s
Then the mass flow rate is
M = AvD = (3.6961 x 10⁻⁵ m²)*(v m/s)*(735 kg/m³) = 0.027166v kg/s
The gasoline pumping rate is given as 5.64 x 10⁻² kg/s, therefore
0.027166v = 0.0564
v = 2.076 m/s
Answer: 2.076 m/s
The gasoline moves through the fuel line at 2.076 m/s.
Answer:
a)15 N
b)12.6 N
Explanation:
Given that
Weight of block (wt)= 21 N
μs = 0.80 and μk = 0.60
We know that
Maximum value of static friction given as
Frs = μs m g = μs .wt
by putting the values
Frs= 0.8 x 21 = 16.8 N
Value of kinetic friction
Frk= μk m g = μk .wt
By putting the values
Frk= 0.6 x 21 = 12.6 N
a)
When T = 15 N
Static friction Frs= 16.8 N
Here the value of static friction is more than tension T .It means that block will not move and the value of friction force will be equal to the tension force.
Friction force = 15 N
b)
When T= 35 N
Here value of tension force is more than maximum value of static friction that is why block will move .We know that when body is in motion then kinetic friction will act on the body.so the value of friction force in this case will be 12.6 N
Friction force = 12.6 N
The total work done on the car is 784Joule.
<h3>What's the acceleration of the car?</h3>
- As per Newton's equation of motion, V= U+at
- U= initial velocity= 0 m/s
V= vinal velocity= 20m/s
t= time = 10s
a= acceleration
=> a= 20/10= 2m/s²
<h3>What's the distance covered by the car in 10 seconds?</h3>
- As per Newton's equation of motion,
V²-U² = 2aS
- S= distance covered by the car
- So, 20²-0=2×2×S=4S
=> 400= 4S
=> S= 400/4= 100m
<h3>What's the work done on the car due to frictional force?</h3>
Work done by frictional force= frictional force × distance
= (0.2×4×9.8)×100
= 784Joule
Thus, we can conclude that the work done on the car is 784Joule.
Learn more about the work done here:
brainly.com/question/25573309
#SPJ1