1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Romashka [77]
3 years ago
11

We can use energy principles to make ____ predictions.

Physics
1 answer:
stira [4]3 years ago
5 0
Compatible and speedy
You might be interested in
A 60-W, 120-V light bulb and a 200-W, 120-V light bulb are connected in series across a 240-V line. Assume that the resistance o
gulaghasi [49]

A. 0.77 A

Using the relationship:

P=\frac{V^2}{R}

where P is the power, V is the voltage, and R the resistance, we can find the resistance of each bulb.

For the first light bulb, P = 60 W and V = 120 V, so the resistance is

R_1=\frac{V^2}{P}=\frac{(120 V)^2}{60 W}=240 \Omega

For the second light bulb, P = 200 W and V = 120 V, so the resistance is

R_1=\frac{V^2}{P}=\frac{(120 V)^2}{200 W}=72 \Omega

The two light bulbs are connected in series, so their equivalent resistance is

R=R_1 + R_2 = 240 \Omega + 72 \Omega =312 \Omega

The two light bulbs are connected to a voltage of

V  = 240 V

So we can find the current through the two bulbs by using Ohm's law:

I=\frac{V}{R}=\frac{240 V}{312 \Omega}=0.77 A

B. 142.3 W

The power dissipated in the first bulb is given by:

P_1=I^2 R_1

where

I = 0.77 A is the current

R_1 = 240 \Omega is the resistance of the bulb

Substituting numbers, we get

P_1 = (0.77 A)^2 (240 \Omega)=142.3 W

C. 42.7 W

The power dissipated in the second bulb is given by:

P_2=I^2 R_2

where

I = 0.77 A is the current

R_2 = 72 \Omega is the resistance of the bulb

Substituting numbers, we get

P_2 = (0.77 A)^2 (72 \Omega)=42.7 W

D. The 60-W bulb burns out very quickly

The power dissipated by the resistance of each light bulb is equal to:

P=\frac{E}{t}

where

E is the amount of energy dissipated

t is the time interval

From part B and C we see that the 60 W bulb dissipates more power (142.3 W) than the 200-W bulb (42.7 W). This means that the first bulb dissipates energy faster than the second bulb, so it also burns out faster.

7 0
3 years ago
What is the difference in Neil Armstrong’s weight on the moon and on earth? Neils mass is 160kg including his spacesuit and back
Len [333]

Explanation:

Given parameters:

Mass of Neil Armstrong = 160kg

Gravitational pull of earth = 10N/kg

Moon's pull = 17% of the earth's pull

Unknown:

Difference between Armstrong's weight on moon and on earth.

Solution:

To find the weight,

   Weight = mass x acceleration due to gravity = mg

Moon's gravitational pull = 17% of the earth's pull = 17% x 10 = 1.7N/kg

Weight on moon = 160 x 1.7 = 272N

Weight on earth = 160 x 10 = 1600N

The difference in weight = 1600 - 272 = 1328N

The weight of Armstrong on earth is 1328N more than on the moon.

Learn more:

Weight and mass brainly.com/question/5956881

#learnwithBrainly

3 0
3 years ago
PLEASEEE HELPPPP
solniwko [45]

Answer:

Explanation:

average speed more than 25.0m/s.

5 0
3 years ago
Read 2 more answers
Why are scientific theories modified, but seldom discarded?
scoundrel [369]
Because some scientific theories are true and some are false
5 0
3 years ago
Read 2 more answers
A cannon fires a shell straight upward; 2.3 s after it is launched, the shell is moving upward with a speed of 17 m/s. Assuming
PtichkaEL [24]

Answer:

The speed of the shell at launch and 5.4 s after the launch is 13.38 m/s it is moving towards the Earth.                    

Explanation:

Let u is the initial speed of the launch. Using first equation of motion as :

u=v-at

a=-g

u=v+gt\\\\u=17+9.8\times 2.3\\\\u=39.54\ m/s

The velocity of the shell at launch and 5.4 s after the launch is given by :

v=u-gt\\\\v=39.54-9.8\times 5.4\\\\v=-13.38\ m/s

So, the speed of the shell at launch and 5.4 s after the launch is 13.38 m/s it is moving towards the Earth.

6 0
3 years ago
Other questions:
  • 3. According to Hund's rule, what's the expected magnetic behavior of vanadium (V)?
    7·1 answer
  • georgia is jogging with a velocity of 4 m/s when she accelerates at 2 m/s squared for 3 seconds. How fast is Georgia running now
    6·1 answer
  • Mechanical energy is a term that is used to describe A. kinetic energy only. B. both potential and kinetic energy. C. potential
    10·2 answers
  • Use the diagram to answer each question. 651-06-01-03-00_files/i0160000.jpg In phase E, from what direction is the sun shining?
    5·2 answers
  • There is a single electron at a distance from the point charge. On which of the following quantities does the force on the elect
    8·2 answers
  • An object has a mass of 0.250 kg. What is the gravitational force of on the object by the earth?
    14·1 answer
  • How to brought people or myself out of sadness?
    8·1 answer
  • In certain cases, using both the momentum principle and energy principle to analyze a system is useful, as they each can reveal
    9·1 answer
  • 4.- Una vagoneta de 1000 kg de peso parte del reposo en el punto 1 y desciende, sin rozamiento, por la vía indicada en la figura
    7·1 answer
  • 18.5 miles per second (30 km/sec). Choose the Earth movement that best relates to this description.
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!