The planet closest to the sun; Mercury.
Answer:
Explanation:
Let fuel is released at the rate of dm / dt where m is mass of the fuel
thrust created on rocket
= d ( mv ) / dt
= v dm / dt
this is equal to force created on the rocket
= 220 dv / dt
so applying newton's law
v dm / dt = 220 dv / dt
v dm = 220 dv
dv / v = dm / 220
integrating on both sides
∫ dv / v = ∫ dm / 220
lnv = ( m₂ - m₁ ) / 220
ln4000 - ln 2500 = ( m₂ - m₁ ) / 220
( m₂ - m₁ ) = 220 x ( ln4000 - ln 2500 )
( m₂ - m₁ ) = 220 x ( 8.29 - 7.82 )
= 103.4 kg .
Answer: The drag force goes up by a factor of 4
Explanation:
The <u>Drag Force</u> equation is:
(1)
Where:
is the Drag Force
is the Drag coefficient, which depends on the material
is the density of the fluid where the bicycle is moving (<u>air in this case)
</u>
is the transversal area of the body or object
the bicycle's velocity
Now, if we assume
,
and
do not change, we can rewrite (1) as:
(2)
Where
groups all these coefficients.
So, if we have a new velocity
, which is the double of the former velocity:
(3)
Equation (2) is written as:
(4)
Comparing (2) and (4) we can conclude<u> the Drag force is four times greater when the speed is doubled.</u>
Together, normal and reverse faults are called dip-slip faults, because the movement on them occurs along the dip direction -- either down or up, respectively. Reverse faults create some of the world's highest mountain chains, including the Himalaya Mountains and the Rocky Mountains .