A. lunar phases result from the changing lunar mass. Let me know if this helped.
Answer: Velocity terminal = 0.093m/s
Explanation:
1. We start by evaluating the gap distance between the two cylinders as h = R(sleeve) - R(cylinder)
= (0.0604/2 - 0.06/2)m
= 2×10^-4
Surface are of the cylinder in the drop, which is required in order to evaluate the shearing stress can be expressed as A(cylinder) = π.d.L
= (π×0.06×0.4)m²
= 0.075m²
Since the force of the cylinder's weight is going to balance the shearing force on the walls, we can express the next equation and derive terminal velocity from it.
Shearing stress = u×V.terminal/h = 0.86×V/0.0002
= 4300Vterminal
Therefore, Fw = shearing stress × A
30N = 4300Vterminal × 0.075
V. terminal = 30/4300 m.s
V. terminal = 0.093m/s
Some guidance notes which may help.To calculate the current flow, Ohm's law can be used. This can be written as current=voltage/resistance, or I=V/R. V is 1.5V.R for the copper wire quoted would be calculated as R = resistivity x length/cross sectional area. The area would be calculated from the formula area = pi x diameter squared/4So, R=resistivity x length divided by (pi x diameter squared/4)Until is the resistivity of copper is known, that's about as far as can be gone.Any further questions, please ask.
1. Answer: components
A two dimensional vector can be divided into two parts called horizontal component and vertical component.
A three dimensional vector can be divided into three components: one along x-axis, one along y-axis and one along z-axis.
Hence, the vector parts that add up to the resultant are called components.
2. Answer: 5 miles.
The resultant distance along the straight line from the starting point to the end point would be the displacement.
The displacement would be equal to the magnitude of the hypotenuse formed in the right triangle.
Displacement, 
3. Answer: Scalar
A scalar quantity has only magnitude. For example, speed and distance are scalar quantities and can be normally added to find the total.
A vector quantity has both magnitude as well as direction. The components are summed according to vector addition rules. For example, velocity, acceleration, force etc.