Is mantle plate versus lithospheric plate ,one of the choices.?
These are the correct solutions:
It is 11 a.m. in the Eastern Time Zone; therefore, it is 8 a.m. in the Pacific Time Zone. (3 hrs behind)
It is 3 p.m. in the Central Time Zone; therefore, 2 p.m. in the Mountain Time Zone. (1 hr behind)
It is 6 p.m. in the Pacific Time Zone; therefore, it is 4 p.m in Hawaii. (2 or 3 hours behind depending on time of year)
It is 6 p.m. in Hawaii; therefore, it is 11 p.m. in the Eastern Time Zone (5 or 6 hours behind depending on time of year).
It is 3 p.m. in Hawaii; therefore, it is 6 p.m. in the Mountain Time Zone (3 or 4 hours behind depending on time of year).
The wave length becomes shorter and the pitch becomes higher
Answer:
559.5 N
Explanation:
Applying,
v² = u²+2gs............. Equation 1
Where v = final velocity,
From the question,
Given: s = 5.10 m, u = 0 m/s ( from rest)
Constant: 9.8 m/s²
Therefore,
v² = 0²+2×9.8×5.1
v² = 99.96
v = √(99.96)
v = 9.99 m/s
As the diver eneters the water,
u = 9.99 m/s, v = 0 m/s
Given: t = 1.34 s
Apply
a = (v-u)/t
a = 9.99/1.34
a = -7.46 m/s²
F = ma.............. Equation 2
Where F = force, m = mass
Given: m = 75 kg, a = -7.46 m/s²,
F = 75(-7.46)
F = -559.5 N
Hence the average force exerted on the diver is 559.5 N
<span>A photon is characterized by either a wavelength, denoted by λ or equivalently an energy, denoted by E. There is an inverse relationship between the energy of a photon (E) and the wavelength of the light (λ) given by the equation:
E=hc/λ
E=hc/λ
where h is Planck's constant and c is the speed of light. The value of these and other commonly used constants is given in the constants page.
h = 6.626 × 10 -34 joule·s
c = 2.998 Ă— 108 m/s
By multiplying to get a single expression, hc = 1.99 Ă— 10-25 joules-m
E=hc/λ
(6.626*10^-34 J*s) x (2.998Ă—10^8m/s)/ 1.5*10^-8 m
= 1.32*10^-17 J</span>