Answer:
Option A; V = 2.92 L
Explanation:
If we assume a lot of things, like:
The gas is an ideal gas.
The temperature is constant.
The gas does not interchange mass with the environment.
Then we have the relation:
P*V = n*R*T = constant.
Where:
P = pressure
V = volume
n = number of moles
R = constant of the ideal gas
T = temperature.
We know that when P = 0.55 atm, the volume is 5.31 L
Then:
(0.55 atm)*(5.31 L) = constant
Now, when the gas is at standard pressure ( P = 1 atm)
We still have the relation:
P*V = constant = (0.55 atm)*(5.31 L)
(1 atm)*V = (0.55 atm)*(5.31 L)
Now we only need to solve this for V.
V = (0.55 atm/ 1 atm)*(5.31 L) = 2.92 L
V = 2.92 L
Then the correct option is A.
Answer:
The answer that completes the question are in BOLD:
At chemical equilibrium, the amount of PRODUCT AND REACTANT REMAIN CONSTANT because the RATES OF THE FORWARD AND REVERSE REACTIONS ARE EQUAL.
Explanation:
In a reversible chemical reaction, an equilibrium is said to be achieved when the rates of the forward reaction is equal to that of the reverse reaction. A reversible reaction is one in which products are formed from reactants simultaneously with the formation of reactants from products.
The combination of two or more substances called REACTANTS gives rise to another substance called PRODUCT, which can in turn give rise to Reactants again. With time, the rate at which the reactants give rise the products, which is called the FORWARD REACTION will be equal to the rate at which the products give rise to the reactants, which is called REVERSE REACTION. At this point, the chemical reaction is said to be in a STATE OF EQUILIBRIUM.
When the rate at which both reaction occurs becomes equal i.e. at an equilibrium state, the concentration of both the reactants and the products becomes constant i.e. no longer changes. Hence, the amount of the reactants forming the products is the same as the amount of products forming the reactants.
N.B: At chemical equilibrium, the amount of the reactants and products does not necessarily equals zero (0). It simply means that there is no net change in the concentration/amount of both reactants and products.
For the first one the pattern is multiply the previous number by five as you see 1 x 5 = 5 and so on. To keep adding to it you would do
125 x 5 = 625 625 x 5 = 3125 3125 x 5 = 15625
Now for the second one the pattern is divide the previous number by three as you can see 2187 / 3 = 729 and so on. To keep going you would
81 / 3 = 27 27 / 3 = 9 9 / 3 = 3
I hope this helps you and if you have anymore questions i'll be glad to answer them.
Answer:
For iron
Final temperature = 54,22°C
For copper
Final Temperature = 63.67 °C
Explanation
Hello,
You are using a torch to warm up a block of iron that has an initial temperature of 32°C.
The first you have to know is that the "heat capacity" could simply define as the heat required to go from an initial temperature to a final temperature.
So you need to use the heat capacity equation as follow in the paper.
The equation has to have all terms in the same units, so:
q = 12000 J
s = 0.450 J / g °C
m = 1200 g
Ti = 32 °C