Answer:
ΔG°rxn = +50.8 kJ/mol
Explanation:
It is possible to obtain ΔG°rxn of a reaction at certain temperature from ΔH°rxn and S°rxn, thus:
<em>ΔG°rxn = ΔH°rxn - T×S°rxn (1)</em>
In the reaction:
2 HNO3(aq) + NO(g) → 3 NO2(g) + H2O(l)
ΔH°rxn = 3×ΔHfNO2 + ΔHfH2O - (2×ΔHfHNO3 + ΔHfNO)
ΔH°rxn = 3×33.2kJ/mol + (-285.8kJ/mol) - (2×-207.0kJ/mol + 91.3kJ/mol)}
ΔH°rxn = 136.5kJ/mol
And S°:
S°rxn = 3×S°NO2 + S°H2O - (2×S°HNO3 + S°NO)
ΔH°rxn = 3×0.2401kJ/molK + (0.0700kJ/molK) - (2×0.146kJ/molK + 0.2108kJ/molK)
ΔH°rxn = 0.2875kJ/molK
And replacing in (1) at 298K:
ΔG°rxn = 136.5kJ/mol - 298K×0.2875kJ/molK
<em>ΔG°rxn = +50.8 kJ/mol</em>
<em />
Answer:
<h3>... :-!...................nose...........</h3>
Answer:
76.5g KCl/74.55 grams per mole Kcl = x
molality= x/.085 kg H2O
Explanation:
well remember molality is moles of solute/kilograms of solvent. So it's the moles of KCl over 85 g of h20 converted into kg. if this makes sense.
Answer:
Las bebidas gaseosas como las gaseosas están hechas de un soluto de dióxido de carbono gaseoso en un líquido. La solubilidad del dióxido de carbono en el líquido depende de la presión y la temperatura de la lata de refresco, y también de agitar la lata de refresco que introduce burbujas que permanecen ocultas hasta que se abre la lata antes de que burbujee.
Por lo tanto, dado que la presión en la lata de refresco permanece constante, elevar la temperatura, agitar la lata de refresco o congelar el refresco, lo que aumenta la cantidad de dióxido de carbono en la porción líquida, hará que el refresco forme espuma y se derrame.
Explanation:
This is more of a physics explanation, but here we go.
Mass is a measure of how much "matter" is in an object. Weight is the force applied onto an object by gravity. Weight itself can be related to mass like this:

where g is a gravitational constant. For our purposes, it's defined by whatever planet you are on. Following this, we can demonstrate that mass is NOT the same thing as weight if we take two objects of the same mass and put them on different planets.
Let E refer to Earth and F refer to Mars

Following this, we can see clearly that weight is not the same as mass:

If weight was the same thing as mass, the two values would be the same, as the mass of the two objects is the same. But since weight is defined in the context of gravity, they are not.