To calculate atomic mass, you have to take to weighted average of the isotopes' masses. What that means is M = RA*106 + (1 – RA)*104, where RA is relative abundance expressed in decimal form. If you simplify the right side of that equation, you get M = 2*RA + 104. Doing a little more algebra yields RA = (M –104)/2 = (104.4 – 104)/2 = 0.4 / 2 = 0.2, which is 20%. So the answer is B.
Answer:
A
Explanation:
B describes a strong base, C just isn't true there are only 7 strong acids, D describes a weak acid
Answer:
1.33 L.
Explanation:
- We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and T are constant, and have different values of P and V:
<em>(P₁V₁) = (P₂V₂)</em>
<em></em>
Knowing that:
V₁ = 4.0 L, P₁ = 2.0 atm,
V₂ = ??? L, P₂ = 6.0 atm.
- Applying in the above equation
(P ₁V₁) = (P₂V₂)
<em>∴ V₂ = P ₁V₁/P₂</em> = (2.0 atm)(4.0 L)/(6.0 atm) =<em> 1.33 L.</em>
First, we need the no.of moles of O2 = mass/molar mass of O2
= 55 g / 32 g/mol
= 1.72 mol
from the balanced equation of the reaction:
2H2 (g) + O2(g) → 2H2O(g)
we can see that the molar ratio between O2: H2O = 1: 2
So we can get the no.of moles of H2O = 2 * moles of O2
= 2 * 1.72 mol
= 3.44 mol
So by substitution by this value in ideal gas formula:
PV = nRT
when P = 12.4 atm & n H2O = 3.44 mol & R= 0.0821 & T = 85 + 273=358K
12.4 atm *V = 3.44 * 0.0821 * 358 = 8.15 L
∴ V ≈ 8.2 L