<u>Answer:</u> When bleach is mixed with water, it produces hypochlorous acid.
<u>Explanation:</u>
The chemical name for bleach is sodium hypochlorite. When this compound is reacted with water, it produces hypochlorous acid and sodium hydroxide.
The chemical equation for the reaction of sodium hypochlorite and water follows:

By Stoichiometry of the reaction:
1 mole of sodium hypochlorite reacts with 1 mole of water to produce 1 mole of hypochlorous acid and 1 mole of sodium hydroxide.
Hence, when bleach is mixed with water, it produces hypochlorous acid.
Answer:
- Dalton used creativity to modify Proust's experiment and interpret the results.
- Thomson used creativity to interpret the results of the cathode ray tube experiment.
Explanation:
give me brainlest
When you inhale, air passes through the nasal cavity. There, mucus and hairs clean the air from most foreign particles before entering the body. Then, the air passes from the nasal cavity to the pharynx. After the pharynx, it passes through the larynx reaching the trachea. After passing through the trachea, the air reaches the bronchi, and after the bronchi, the bronchioles that branch off the bronchi. From the bronchioles, the air reaches the alveoli that is when gas exchange happens. O2 enters and CO2 leaves.
Answer:
91.26 g
Explanation:
Given data:
Mass of PF₃ = 180 g
Mass of F₂ required = ?
Solution:
Chemical equation:
P₄ + 6F₂ → 4PF₃
Moles of PF₃:
Number of moles = mass/ molar mass
Number of moles = 180 g/ 88 g/mol
Number of moles = 2.05 mol
Now we will compare the moles of PF₃ with F₂.
PF₃ : F₂
4 : 6
2.05 : 6/4×2.05 = 3.075
Mass of F₂:
Mass of F₂ = moles × molar mass
Mass of F₂ = 3.075 mol × 38 g/mol
Mass of F₂ = 116.85 g
If reaction yield is 78.1%:
116.85 /100 ×78.1 = 91.26 g
Answer:
The intermolecular forces between the solute and solvent.
Explanation:
When you are heating a solvent, the intermolecular forces are reduced because the distances between molecules are large. Thus, in a solution where solvent is hot the intermolecular forces between solute and solvent are lower than those solutions where solvent is in room temperature.
The covalent bonds do not change because this mean a chemical reaction that doesn't occur in a solution.
Usually solid solutes melts in a higher temperature than boiling point in solvents. Thus, a compound normally doesn't melt in a hot solvent.
I hope it helps!