The block has maximum kinetic energy at the bottom of the curved incline. Since its radius is 3.0 m, this is also the block's starting height. Find the block's potential energy <em>PE</em> :
<em>PE</em> = <em>m g h</em>
<em>PE</em> = (2.0 kg) (9.8 m/s²) (3.0 m)
<em>PE</em> = 58.8 J
Energy is conserved throughout the block's descent, so that <em>PE</em> at the top of the curve is equal to kinetic energy <em>KE</em> at the bottom. Solve for the velocity <em>v</em> :
<em>PE</em> = <em>KE</em>
58.8 J = 1/2 <em>m v</em> ²
117.6 J = (2.0 kg) <em>v</em> ²
<em>v</em> = √((117.6 J) / (2.0 kg))
<em>v</em> ≈ 7.668 m/s ≈ 7.7 m/s
The great astronomer of ancient times who summarized and improved...in a book now called The Almagest) is Ptolemy This is further explained below.
<h3>Who is Ptolemy?</h3>
Generally, Claudius Ptolemy was a Greek mathematician, astronomer, and geographer who lived in the second century CE and is best known for proposing the geocentric model of the cosmos, which was used to explain planetary and stellar movements for the next thousand years.
In conclusion, Ptolemy, the ancient world's preeminent astronomer, compiled and refined a system of circles inside circles to describe the complexities of planetary motion, publishing his work in what is now known as The Almagest.
Read more about Ptolemy
brainly.com/question/15075606
#SPJ1
Answer:
Even though the cross-sectional area of each capillary is extremely small compared to that of the large aorta, the total cross-sectional area of all the capillaries added together is about 1,300 times greater than the cross-sectional area of the aorta because there are so many capillaries
Explanation:
More mass, more inertia, less speed, more momentum because momentum is depends its mass and speed. Hope it helps
Answer:
The displacement was 320 meters.
Explanation:
Assuming projectile motion and zero initial speed (i.e., the object was dropped, not thrown down), you can calculate the displacement using the kinematic equation:

The displacement was 320 meters.