1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga55 [171]
2 years ago
11

The ball in this activity could reach much greater speeds if not for the loss of energy in many different transformations. There

is one major energy loss that is causing the ball to move more slowly, what is that energy? What force is acting upon the ball to create this loss of energy?
Please help quick!

Physics
1 answer:
harkovskaia [24]2 years ago
3 0

Answer:

friction acts upon the ball when it is sliding down the slide and this action creates thermal energy

You might be interested in
How remove local action and polarization ​
slava [35]

Answer:

Local action is removed by amalgamating zinc rod.

Explanation:

This prevents chemical reaction to occur because impurities in the zinc cannot get into contact with an electrolyte.

8 0
3 years ago
two point charges of magnitude 4.0 μc and -4.0 μc are situated along the x-axis at x1 = 2.0 m and x2 = -2.0 m, respectively. wha
user100 [1]

The electric potential at the origin of the xy coordinate system is negative infinity

<h3>What is the electric field due to the 4.0 μC charge?</h3>

The electric field due to the 4.0 μC charge is E = kq/r² where

  • k = electric constant = 9.0 × 10 Nm²/C²,
  • q = 4.0 μC = 4.0 × 10 C and
  • r = distance of charge from origin = x₁ - 0 = 2.0 m - 0 m = 2.0 m

<h3>What is the electric field due to the -4.0 μC charge?</h3>

The electric field due to the -4.0 μC charge is E = kq'/r² where

  • k = electric constant = 9.0 × 10 Nm²/C²,
  • q' = -4.0 μC = -4.0 × 10 C and
  • r = distance of charge from origin = 0 - x₂ = 0 - (-2.0 m) = 0 m + 2.0 m = 2.0 m

Since both electric fields are equal in magnitude and directed along the negative x-axis, the net electric field at the origin is

E" = E + E'

= -2E

= -2kq/r²

<h3>What is the electric potential at the origin?</h3>

So, the electric potential at the origin is V = -∫₂⁰E".dr

= -∫₂⁰-2kq/r².dr

Since E and dr = dx are parallel and r = x, we have

= -∫₂⁰-2kqdxcos0/x²

= 2kq∫₂⁰dx/x²

= 2kq[-1/x]₂⁰

= -2kq[1/x]₂⁰

= -2kq[1/0 - 1/2]

= -2kq[∞ - 1/2]

= -2kq[∞]

= -∞

So, the electric potential at the origin of the xy coordinate system is negative infinity

Learn more about electric potential here:

brainly.com/question/26978411

#SPJ11

3 0
2 years ago
_______ was the first person to propose the idea of moving continents as a scientific hypothesis.
yan [13]
The answer is b alfred wegener 


8 0
3 years ago
Read 2 more answers
What is work done in physics and how can it be calculated
shusha [124]
Work is done when a force is applied to an object moves that object. the work is calculated by multiplying the force by the amount of movement of an object
8 0
3 years ago
Read 2 more answers
If an object is thrown in an upward direction from the top of a building 160 ft. High at an initial speed of 21.82 mi/h what is
viktelen [127]
To solve this problem we are going to use tow kinematic equations for falling objects.
1. Kinematic equation for final velocity: V_{f}=V_{i}+gt
where
V_{f} is the final velocity 
V_{i} is the initial velocity 
g is the acceleration due to gravity 32 \frac{ft}{s^2}
t is the time 
2. Kinematic equation for distance: d=V_{i}t+ \frac{1}{2} gt^2
where
d is the distance 
V_{i} is the initial velocity 
V_{f} is the final velocity
g is the acceleration due to gravity 32 \frac{ft}{s^2}
t is the time 

First, we are going to convert 21.82 mi/h to ft/s:
21.82 \frac{mi}{h} =31.21 \frac{ft}{s}

Next, we are going to use the first equation to find how long it takes for the rock to reach its maximum height.
We know for our problem that the object is thrown in upward direction, so its velocity at its maximum height (before falling again) will be zero; therefore: V_{f}=0. We also know that it initial speed is 31.21 ft/s, so V_{i}=31.21. Lets replace those values in our formula to find t:
V_{f}=V_{i}+gt
0=31.21+(-32)t
-32t=-31.21
t= \frac{-31.21}{-32}
t=0.98seconds

Next, we are going to use that time in our second kinematic equation to find the distance the object reach at its maximum height:
d=V_{i}t+ \frac{1}{2} gt^2
d=31.21(0.98)+ \frac{1}{2} (-32)(0.98)^2
d=15.22ft 

Now we can add the height of the building and the maximum height of the object:
d=160+15.22=175.22ft

Next, we are going to use that height (distance) in our second kinematic equation one more time to fin how long it takes for the object to fall from its maximum height to the ground:
d=V_{i}t+ \frac{1}{2} gt^2
175.22=31.21t+ \frac{1}{2} (32)t^2
16t^2+31.21t-175.22=0
t=2.47 or t=-4.43
Since time cannot be negative, t=2.47 is the time it takes the object to fall to the ground. 

Finally, we can use that time in our first kinematic equation to find the final speed of the object when it hits the ground:
V_{f}=V_{i}+gt
V_{f}=31.21+(32)(2.47)
V_{f}=110.25 ft/s

We can conclude that the speed of the object when it hits the ground is 110.25 ft/s


5 0
3 years ago
Other questions:
  • It's nighttime, and you've dropped your goggles into a 3.2-mm-deep swimming pool. If you hold a laser pointer 1.1 mm above the e
    5·1 answer
  • The specific heat of water is 4190 j/(kg*k). suppose you put 1 kg of water (a bit over 4 cups) into a microwave that can deliver
    10·1 answer
  • Suppose you use a machine that gives you a mechanical advantage of 2 to achieve an output force of 30 Newtons. What must the inp
    7·1 answer
  • 4. Susan observed that different kinds and amounts of fossils were present in a cliff behind her house. She wondered why changes
    5·2 answers
  • There is more land in the Northern Hemisphere than in the Southern Hemisphere. How might this difference affect CO2, concentrati
    6·1 answer
  • How do scientists predict hurricanes?
    13·1 answer
  • You're driving down the highway late one night at 20 m/s when a deer steps onto the road 38 m in front of you.Your reaction time
    6·1 answer
  • A 24 kg child descends a 5.0 m high slide and reaches the ground with a speed of 2.8 m/s. What is the mass of the child?
    6·1 answer
  • Someone plz answer this quickly!!
    7·1 answer
  • T object]user: if you have a diagnostic x-ray, then you have been:
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!