Answer:
Since in summer, the eastern side do not face the sunlight and hence the water in eastern pot remain cool in summer.
Answer:
Hope the above picture might help you :)
Answer:
- < 25 m/s
- triangle inequality
- between north and east
- 45° < angle < 60°
Explanation:
(a) Just as one-dimensional numbers add on a number line by putting them end-to-end, so two-dimensional numbers add on a coordinate plane the same way.
Here, we choose to let the positive y-axis represent North, and the positive x-axis, East. This is the way a map is conventionally oriented. The velocity of the plane is represented by a vector pointing north (up). Its length represents the magnitude of the velocity. Likewise, the wind is represented by a vector of length 15 pointing east (right). The sum of these is the hypotenuse of the triangle they form.
The magnitude of the sum can be found here using the Pythagorean theorem, but for the purpose of this question, you're not asked to find that.
Instead, you're asked to estimate whether it is more or less than 25 (m/s).
Your knowledge of the triangle inequality will tell you that the hypotenuse (resultant) must be shorter than the sum of the lengths of the sides of the triangle, hence must be less than 10+15 = 25.
__
(b) The triangle inequality says the resultant is less than the sum of the other two sides of the triangle.
__
(c) Since the wind is blowing the plane toward the east, but the plane is traveling toward the north, the resulting direction is somewhere between north and east.
__
(d) "Somewhere between north and east" can be expressed as the inequality ...
0° < angle < 90°
Answer:
C
Explanation:
b is 55 miles per hour south or 55mph[South]
the important part to understand is that velocity is a vector meaning it also has to have a direction, in this case south. That is why a (2m/s) is not a velocity, however 2m/s is a speed.
Answer:negative charge, small relative mass, and found outside the nucleus
Explanation:
The electron is one of the subatomic particles. It is negatively charged and has a relatively small or somewhat negligible mass. It is found outside the nucleus on the orbits. The electron is bound to the nucleus by electrostatic forces of attraction in the Bohr's model of the atom.