Answer:
And the best way to solve this problem is using the normal standard distribution and the z score given by:
If we apply this formula to our probability we got this:
And we can find this probability using the complement rule and the normal standard table and we got:
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution problem
Let X the random variable that represent the variable of interest of a population, and for this case we know the distribution for X is given by:
Where
and
We are interested on this probability
And the best way to solve this problem is using the normal standard distribution and the z score given by:
If we apply this formula to our probability we got this:
And we can find this probability using the complement rule and the normal standard table and we got:
AbG is. I tedious angel meajsres of the polygon
Answer:
24
Step-by-step explanation:
Ratio of lambs to chickens is 3:1
So if chickens are 8 then lambs are 3 times more.
1u=8
3u=8×3
=24
Answer:
The probability that none of the meals will exceed the cost covered by your company is 0.2637.
Step-by-step explanation:
A hyper-geometric distribution is used to define the probability distribution of <em>k</em> success in <em>n</em> samples drawn from a population of size <em>N</em> which include <em>K</em> success. Every draw is either a success of failure.
The random variable <em>X</em> = number of meals that will exceed the cost covered by the company.
The random variable <em>X</em> follows a hyper-geometric distribution.
The information provided is:
N = 15
K = 3
n = 5
k = 0
The probability mass function of a hyper-geometric distribution is:

Compute the probability that none of the meals will exceed the cost covered by your company as follows:

Thus, the probability that none of the meals will exceed the cost covered by your company is 0.2637.
The gcf of 25 and 60 is 5