Answer:
1.) Triangle ABC is congruent to Triangle CDA because of the SAS theorem
2.) Triangle JHG is congruent to Triangle LKH because of the SSS theorem
Step-by-step explanation:
Alright. Let's start with the 1st figure. How do we prove that triangles ABC and CDA (they are named properly) are congruent? First, we can see that segments BC and AD have congruent markings, so that can help us. We also see a parallel marking for those segments as well, meaning that the diagonal AC is also a transversal for those parallel segments. That means we can say that angle CAD is congruent to angle ACB because of the alternate interior angles theorem. Then, the 2 triangles also share the side AC (reflexive property).
So, we have 2 congruent sides and 1 congruent angle for each triangle. And in the way they are listed, this makes the triangles congruent by the SAS theorem since the angle is adjacent to the 2 sides that are congruent.
The second figure is way easier. As you can clearly see by the congruent markings on the diagram, all the sides on one triangle are congruent to the other. So, since there are 3 sides congruent, we can say the triangles JHG and LKH are congruent by the SSS theorem.
If you play music then you won't get distracted by the outside world or if you study in a quiet room
Answer:
Weights of at least 340.1 are in the highest 20%.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

a. Highest 20 percent
At least X
100-20 = 80
So X is the 80th percentile, which is X when Z has a pvalue of 0.8. So X when Z = 0.842.




Weights of at least 340.1 are in the highest 20%.
The last answer: 2 or 0
Explanation:
When you graph this function, it crosses the x-axis once. In other words, that means there is only 1 real zero and 2 imaginary complex zeros. In addition, imaginary solutions always come in pairs, so there can’t be a odd number of them such as 3.
Answer:
the principal and the amount is 1,800 and 13,800 respectively
Step-by-step explanation:
The computation of the simple interest and amount for the end of the 3rd year is shown below:
Simple interest is
= Principal × rate of interest × time period
= 12,000 × 5% × 3 years
= 1,800
Now the amount is
= 12,000 + 1,800
= 13,800
hence, the principal and the amount is 1,800 and 13,800 respectively