Answer:
Explanation:We should know that weight = mass * gravity.
That is weight equals mass times gravity.
Gravity is a force of attraction between any two bodies in the universe. It is directly proportional to product of their masses and inversely proportional to the square of the distance between them.
Gravity is generally measured in terms of acceleration due to gravity, denoted as g. For Earth it is, 9.8 m/s². And for moon, it is about 1.62 m/s².
On Earth, your weight is 70 kg = W
W = mass x 9.8
70 = mass x 9.8
Your mass is 70/ 9.8
i.e approximately 7.14
Weight at the Moon, W' = 7.14 x 1.62
Hence, your weight on the surface of the moon is just 11.56 kg.
Congratulations, you've lost about 58.14 kilograms without any hard exercise. And you're as light as a Sweedish Vallhund! Cheers!
Answer:
a) 
b) 
c) 
d)
or 18.3 cm
Explanation:
For this case we have the following system with the forces on the figure attached.
We know that the spring compresses a total distance of x=0.10 m
Part a
The gravitational force is defined as mg so on this case the work donde by the gravity is:

Part b
For this case first we can convert the spring constant to N/m like this:

And the work donde by the spring on this case is given by:

Part c
We can assume that the initial velocity for the block is Vi and is at rest from the end of the movement. If we use balance of energy we got:

And if we solve for the initial velocity we got:

Part d
Let d1 represent the new maximum distance, in order to find it we know that :

And replacing we got:

And we can put the terms like this:

If we multiply all the equation by 2 we got:

Now we can replace the values and we got:


And solving the quadratic equation we got that the solution for
or 18.3 cm because the negative solution not make sense.
Answer:
Earth's atmosphere was largely made up of nitrogen and carbon dioxide gases. After photosynthesizing organisms multiplied on Earth's surface and in the oceans, much of the carbon dioxide was replaced with oxygen.
Idk if this helps but plz mark brainliest if it does
law of conservation of energy
aka the first law of thermodynamics