Answer:
T = 2010 N
Explanation:
m = mass of the uniform beam = 150 kg
Force of gravity acting on the beam at its center is given as
W = mg
W = 150 x 9.8
W = 1470 N
T = Tension force in the wire
θ = angle made by the wire with the horizontal = 47° deg
L = length of the beam
From the figure,
AC = L
BC = L/2
From the figure, using equilibrium of torque about point C
T (AC) Sin47 = W (BC)
T L Sin47 = W (L/2)
T Sin47 = W/2
T Sin47 = 1470
T = 2010 N
Answer:
Explanation:
cSep 20, 2010
well, since player b is obviously inadequate at athletics, it shows that player b is a woman, and because of this, she would not be able to hit the ball. The magnitude of the initial velocity would therefore be zero.
Anonymous
Sep 20, 2010
First you need to solve for time by using
d=(1/2)(a)(t^2)+(vi)t
1m=(1/2)(9.8)t^2 vertical initial velocity is 0m/s
t=.45 sec
Then you find the horizontal distance traveled by using
v=d/t
1.3m/s=d/.54sec
d=.585m
Then you need to find the time of player B by using
d=(1/2)(a)(t^2)+(vi)t
1.8m=(1/2)(9.8)(t^2) vertical initial velocity is 0
t=.61 sec
Finally to find player Bs initial horizontal velocity you use the horizontal equation
v=d/t
v=.585m/.61 sec
so v=.959m/s
Answer:
As light travels in a straight line at a constant speed, it's acceleration is <u>0 m/s²</u>.
There is no rate of change of speed, so there is no acceleration.
- <u>0 m/s²</u> is the right answer.
Answer:
Mass released = 8.6 g
Given data:
Initial number of moles nitrogen= 0.950 mol
Initial volume = 25.5 L
Final mass of nitrogen released = ?
Final volume = 17.3 L
Formula:
V₁/n₁ = V₂/n₂
25.5 L / 0.950 mol = 17.3 L/n₂
n₂ = 17.3 L× 0.950 mol/25.5 L
n₂ = 16.435 L.mol /25.5 L
n₂ = 0.644 mol
Initial mass of nitrogen:
Mass = number of moles × molar mass
Mass = 0.950 mol × 28 g/mol
Mass = 26.6 g
Final mass of nitrogen:
Mass = number of moles × molar mass
Mass = 0.644 mol × 28 g/mol
Mass = 18.0 g
Mass released = initial mass - final mass
Mass released = 26.6 g - 18.0 g
Mass released = 8.6 g
Read more on Brainly.com - brainly.com/question/15623698#readmore
Answer:
923.44N
Explanation:
Obviously Fn cannot equal Fg since the elevator is moving up
Where Fn is the force read on the scale
Fg is gravitational force=mg=77.6 x 9.8=760.48N
So we use this equation:
Fnet = Fn - Fg
ma = Fn - mg
77.6 x 2.1 = Fn – 760.48
162.96N = Fn – 760.48N
923.44 N = Fn
The answer is 923.44 N